Patents Assigned to Samsung Corning Co., Ltd.
  • Publication number: 20110032620
    Abstract: A display filter and a display apparatus including the display filter, which can increase a contrast ratio, increase brightness, and have a great electromagnetic (EM) radiation-shielding effect, are provided. The display filter includes: a filter base; and an external light-shielding layer formed on a surface of the filter base, wherein the external light-shielding layer includes a base substrate including a transparent resin and light-shielding patterns spaced apart on a surface of the base substrate at predetermined intervals, and including a conductive material.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 10, 2011
    Applicant: SAMSUNG CORNING CO., LTD.
    Inventors: Tae Soon PARK, Sang Cheol Jung, In Sung Sohn
  • Patent number: 7679275
    Abstract: A display filter capable of enhancing the visible light transmittance and contrast ratio for a bright room condition and a display device including the same. The display filter includes a filter base, and an external light-shielding layer, disposed on a surface of the filter base, including a matrix made of a transparent resin and a plurality of wedge-shaped black stripes arranged parallel to each other at a surface of the matrix.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: March 16, 2010
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Dae-chul Park, Jae-young Choi, Tae-soon Park, Sang-cheol Jung
  • Patent number: 7674534
    Abstract: An electromagnetic wave shielding filter that has low electric conductivity, high visible light transmittance and good durability, a method of manufacturing the electromagnetic wave shielding filter, and a PDP apparatus including the electromagnetic wave shielding filter. The electromagnetic wave shielding filter includes a laminate structure including multiple stacks each consisting of a niobium oxide layer, a first protective layer having a ZnO as a main component, and a metal layer sequentially laminated in that order, the multiple stacks formed by repeatedly laminating the respective layers at least three times, and a niobium oxide layer formed on the laminate structure.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: March 9, 2010
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Eui-soo Kim, Kyeong-keun Woo, Jeong-hong Oh, Tae-soon Park
  • Patent number: 7655873
    Abstract: Provided are an electromagnetic shielding film capable of improving brightness, a plasma display panel (PDP) filter using the electromagnetic shielding film, a PDP device including the electromagnetic shielding film, and a method of manufacturing the electromagnetic shielding film. The electromagnetic shielding film includes a transparent substrate, an electromagnetic shielding film pattern which is formed on the transparent substrate and whose face opposite to the transparent substrate is blackened, and a black conductive layer pattern which is formed on the electromagnetic shielding film pattern.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: February 2, 2010
    Assignee: Samsung Corning Co., Ltd.
    Inventor: Yong-won Choi
  • Patent number: 7621998
    Abstract: The present invention relates to a freestanding, thick, single crystalline gallium nitride (GaN) film having significantly reduced bending deformation. The inventive GaN film having a crystal tilt angle of C-axis to the <0001> direction per surface distance of 0.0022°/mm exhibits little bending deformation even at a thickness of 1 mm or more, and therefore, is beneficially used as a substrate for a luminescent device.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: November 24, 2009
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Changho Lee, Hyun Min Shin, Sun-Hwan Kong, Hae Yong Lee
  • Patent number: 7592629
    Abstract: A gallium nitride thin film on sapphire substrate having reduced bending deformation and a method for manufacturing the same. An etching trench structure is formed on a sapphire substrate by primary nitradation and HCl treatment and a gallium nitride film is grown thereon by secondary nitradation. The gallium nitride thin film on sapphire substrate comprises an etching trench structure formed on a sapphire substrate, wherein a function graph of a curvature radius Y according to a thickness X of a gallium nitride film satisfies Equation 1 below, and corresponds to or is located above a function graph drawn when Y0 is 6.23±1.15, A is 70.04 ±1.92, and T is 1.59±0.12: Y=Y0+A·e?(X?1)/T,??[Equation 1] where Y is the curvature radius m, X is the thickness of the gallium nitride film, and Y0, A, and T are positive numbers.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: September 22, 2009
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Chang Ho Lee, Sun Hwan Kong
  • Publication number: 20090140198
    Abstract: Disclosed herein is a method of preparing a metal oxide suspension, which is advantageous due to the prevention of hydration and agglomeration of the metal oxide and a simple preparation process. The method of preparing a metal oxide suspension according to this invention includes preparing metal oxide, mixing the metal oxide with a solvent and a surface treating agent to obtain a mixture, and wet milling the mixture such that the metal oxide of the mixture has a nanoscale particle size and the metal oxide is uniformly dispersed in the mixture.
    Type: Application
    Filed: April 18, 2006
    Publication date: June 4, 2009
    Applicants: SAMSUNG CORNING CO., LTD., SAMSUNG CORNING PRECISION GLASS CO., LTD.
    Inventors: Yoon-Gyu Lee, Jin-Ho Lee, Myung-Geun Song, Sin-Ae Song, Ja-Hoo Koo
  • Patent number: 7517917
    Abstract: A composition for preparing a nanoporous material. The composition comprises a thermostable matrix precursor, a calixarene derivative, and a solvent. The composition may enable formation of a low dielectric constant film in which nanopores with a size not larger than 50 ? are uniformly distributed.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: April 14, 2009
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Jin Heong Yim, Kwang Hee Lee
  • Patent number: 7518151
    Abstract: The present invention relates to a gallium nitride/sapphire thin film, wherein a curvature radius thereof is positioned on the right side of a curve plotted from the following functional formula (I): Y=Y0+A·e?(x1?1)/T1+B·(1?e?x2/T2)??(I) wherein Y is the curvature radius (m) of a gallium nitride/sapphire thin film, x1 is the thickness (?m) of a gallium nitride layer, x2 is the thickness (mm) of a sapphire substrate, Y0 is ?107±2.5, A is 24.13±0.50, B is 141±4.5, T1 is 0.56±0.04, and T2 is 0.265±0.5.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: April 14, 2009
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Chang Ho Lee, Hae Yong Lee, Choon Kon Kim, Kisoo Lee
  • Patent number: 7494926
    Abstract: Disclosed herein is a method for forming a highly conductive metal pattern which comprises forming a metal pattern on a substrate by the use of a photocatalyst and a selective electroless or electroplating process, and transferring the metal pattern to a flexible plastic substrate. According to the method, a highly conductive metal pattern can be effectively formed on a flexible plastic substrate within a short time, compared to conventional formation methods. Further disclosed is an EMI filter comprising a metal pattern formed by the method. The EMI filter not only exhibits high performances, but also is advantageous in terms of low manufacturing costs and simple manufacturing process. Accordingly, the EMI filter can be applied to a variety of flat panel display devices, including PDPs and organic ELs.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: February 24, 2009
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Jin Young Kim, Sung Hen Cho, Ki Yong Song, Chang Ho Noh, Euk Che Hwang
  • Patent number: 7466077
    Abstract: A filter assembly, a plasma display panel with the filter assembly and a method of manufacturing the filter assembly. The plasma display panel includes a panel assembly, a chassis base on which a driving circuit is mounted and located on a rear of the panel assembly, a filter assembly mounted in front of the panel assembly, and a case that accommodates the panel assembly, the chassis base, and the filter assembly. The filter assembly includes a transparent substrate, an anti-reflection film, and an electromagnetic wave shielding filter attached to the rear surface of the substrate, and the electromagnetic wave shielding filter is grounded to the inner side of the case and is made of a metal mesh that includes a plating layer and a strike seed layer.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: December 16, 2008
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Kyu-Nam Joo, Kwi-Seok Choi, Hyun-Ki Park, Myung-Dok Lim
  • Patent number: 7462893
    Abstract: A method of fabricating a thick gallium nitride (GaN) layer includes forming a porous GaN layer having a thickness of 10-1000 nm by etching a GaN substrate in a reaction chamber in an HCI and NH3 gas atmosphere and forming an in-situ GaN growth layer in the reaction chamber. The method of forming the porous GaN layer and the thick GaN layer in-situ proceeds in a single chamber. The method is very simplified compared to the prior art. In this way, the entire process is performed in one chamber, and in particular, GaN etching and growth are performed using an HVPE process gas such that costs are greatly reduced.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: December 9, 2008
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Jai-yong Han, Jun-sung Choi, In-jae Song
  • Patent number: 7459549
    Abstract: Disclosed herein is a composition for preparing a nanoporous material. The composition comprises i) a cyclodextrin derivative, ii) a thermostable matrix precursor, and iii) a solvent for dissolving the components i) and ii). The composition enables the preparation of a low dielectric constant film in which nanopores with a size of 20 ? or less are uniformly distributed.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: December 2, 2008
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Jin Heong Yim, Byoung Ki Choi, Duk Keun An
  • Patent number: 7449066
    Abstract: An apparatus for fabricating a GaN single crystal and a fabrication method for producing GaN single crystal ingot are provided. The apparatus includes: a reactor including a ceiling, a floor and a wall with a predetermined height encompassing an internal space between the ceiling and the floor, wherein the ceiling is opposite to the floor; a quartz vessel on the floor containing Ga metal; a mount installed on the ceiling on which a GaN substrate is mounted, the GaN substrate being opposite to the quartz vessel; a first gas supplying unit supplying the quartz vessel with hydrogen chloride (HCl) gas; a second gas supplying unit supplying the internal space of the reactor with ammonia (NH3) gas; and a heating unit installed in conjunction with the wall of the reactor for heating the internal space, wherein the lower portion of the internal space is heated to a higher temperature than the upper portion.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: November 11, 2008
    Assignee: Samsung Corning Co., Ltd.
    Inventor: Jai-yong Han
  • Patent number: 7435666
    Abstract: Provided is an epitaxial growth method for forming a high-quality crystalline growth semiconductor wafer. The method includes forming a buffer layer on a single crystalline wafer using a single crystalline material; forming a mask layer on the buffer layer; forming a plurality of holes in the mask layer using a laser to expose portions of the buffer layer; forming wells having a predetermined depth in the exposed portions of the buffer layer by injecting an etchant into the holes; removing the mask layer and annealing the buffer layer to form a porous buffer layer having cavities obtained by the wells; and forming a crystalline material layer on the porous buffer layer using an epitaxial growth process.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: October 14, 2008
    Assignee: Samsung Corning Co., Ltd.
    Inventor: Sung-soo Park
  • Publication number: 20080248259
    Abstract: The present invention relates to a gallium nitride/sapphire thin film, wherein a curvature radius thereof is positioned on the right side of a curve plotted from the following functional formula (I): Y=Y0+A·e?(x1?1)/T1+B·(1?e?x2/T2) ??(I) wherein Y is the curvature radius (m) of a gallium nitride/sapphire thin film, x1 is the thickness (?m) of a gallium nitride layer, x2 is the thickness (mm) of a sapphire substrate, Y0 is ?107±2.5, A is 24.13±0.50, B is 141±4.5, T1 is 0.56±0.04, and T2 is 0.265±0.5.
    Type: Application
    Filed: October 9, 2007
    Publication date: October 9, 2008
    Applicant: SAMSUNG CORNING CO., LTD.
    Inventors: Chang Ho Lee, Hae Yong Lee, Choon Kon Kim, Kisoo Lee
  • Patent number: 7407865
    Abstract: An epitaxial growth method for forming a high-quality epitaxial growth semiconductor wafer is provided. The method includes forming a single crystalline layer on a single crystalline wafer; forming a mask layer having nano-sized dots on the single crystalline layer; forming a porous buffer layer having nano-sized pores by etching the mask layer and the surface of the single crystalline layer; annealing the porous buffer layer; and forming an epitaxial material layer on the porous buffer layer using an epitaxial growth process.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: August 5, 2008
    Assignee: Samsung Corning Co., Ltd.
    Inventor: Sung-soo Park
  • Publication number: 20080173962
    Abstract: An indium tin oxide (ITO) target including calcium of about 0.001% to about 10% by atom, compared with an indium atom, and an ITO transparent electrode for a display apparatus manufactured from an ITO target are provided. A method of manufacturing the ITO target, the method including: preparing a slurry by mixing an indium oxide powder, a tin oxide powder, and a calcium-containing compound powder; granulating the slurry by milling and drying the slurry to prepare a granulated powder; shaping the granulated powder to form a shaped body; and sintering the shaped body. The ITO target including calcium manufactured by the method can reduce a number of times nodules and arcs are generated during sputtering, thereby growing a film which is able to be used for a long period of time.
    Type: Application
    Filed: March 19, 2007
    Publication date: July 24, 2008
    Applicant: SAMSUNG CORNING CO., LTD.
    Inventors: Joon-Hee Jeong, Jun Ho Choi, Sangchul Lee, Shinhyuk Kang
  • Publication number: 20080149865
    Abstract: Disclosed is an external light shielding film. The external light shielding film comprises a transparent substrate; and an external light shielding pattern formed on a surface of the transparent substrate and including a plurality of external light shielding parts. Each of the plurality of external light shielding parts has a polymer resin and at least one color-changeable colorant. The color of the plurality of external light shielding parts may vary according to an external heat source or vary depending on an intensity of an external light source, thereby improving a contrast ratio in a bright room, and a specific color may be visible even when the power of the display apparatus is OFF, thereby achieving an interior decorative effect.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 26, 2008
    Applicant: Samsung Corning Co., Ltd.
    Inventors: Moon Ki Han, Seung-Ho Moon, Duck Ki Ahn, In Sung Sohn
  • Publication number: 20080143263
    Abstract: There is provided a surface light source device comprising: a light source body including a plurality of discharge spaces therein, a first electrode and a second electrode applying a first voltage into the discharge spaces and arranged parallel to each other, and a third electrode applying a second voltage into the discharge spaces and facing the first and second electrodes and arranged in a direction of crossing the first and second electrodes. In accordance with the present invention, the discharge firing voltage and sustain voltage of the surface light source device can be lowered by applying the first and second voltage to the electrodes. Further, it is possible to divisionally drive the surface light source device by sequentially and/or selectively applying a voltage to divided parts of each electrode.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 19, 2008
    Applicant: Samsung Corning Co., Ltd.
    Inventors: Keun Seok Lee, Kyeong Taek Jung, Ki Yeon Lee, Hyung Bin Youn, Seok Mo Ban, Kyeong Taek Song