Abstract: A light-emitting device includes a substrate including a photonic cavity and configured to function as a gate, an active layer including a two-dimensional material, a first conductive contact, and a second conductive contact. The wavelength range of light generated by the light-emitting device may be narrowed based on the photonic cavity being included in the substrate, and the intensity and wavelength range of the generated light may be controlled based on the substrate functioning as a gate.
Type:
Grant
Filed:
April 25, 2018
Date of Patent:
February 2, 2021
Assignees:
Samsung Electronics Co., Ltd., President and Fellows of Harvard College
Inventors:
Jinseong Heo, Minhyun Lee, Seongjun Park, Philip Kim, Hongkun Park, Donhee Ham
Abstract: Provided are a heterocyclic compound and an organic light-emitting device including the same, the heterocyclic compound being represented by Formula 1:
Type:
Grant
Filed:
February 9, 2018
Date of Patent:
February 2, 2021
Assignees:
Samsung Display Co., Ltd., Seoul National University R&DB Foundation
Inventors:
Sehun Kim, Sooyoung Park, Jieon Kwon, Dawoon Kim, Chihyun Ryoo, Hyein Jeong
Abstract: A near-field communication (NFC) circuit includes a transmitter that generates a transmission signal based on a reference clock signal and transmits the transmission signal through an antenna; a clock recovery circuit that receives a detection signal through the antenna responsive to the transmission signal and recovers a recovered clock signal from the detection signal; a phase detector that detects a phase change of the recovered clock signal; and a controller that determines, based on the phase change of the recovered clock signal, whether an NFC tag external to the NFC circuit is located within a communication range of the NFC circuit.
Type:
Grant
Filed:
October 16, 2019
Date of Patent:
February 2, 2021
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Byeong-Taek Moon, Jun-Ho Kim, Young-Joo Lee
Abstract: A low power driving method includes receiving a signal for a sub control module from a main control module when an electronic device enters a low power mode. The low power driving method also includes transmitting display data to a display driving module in response to the signal.
Abstract: A method for managing Hybrid Automatic Repeat Request (HARQ) feedback transmission by a Dual Sim Dual Standby (DSDS) User Equipment (UE) in a wireless communication network, is provided. The method includes determining, by the DSDS UE, whether a first parameter associated with a primary packet data is identical to a second parameter associated with a secondary packet data. Each of the first parameter and the second parameter comprises a reordering timer value, a New Data Indicator (NDI), a HARQ process number, and a DSDS Radio Frequency (RF) gap duration. The method further includes, in response to the first parameter associated with the primary packet data being determined to be identical to the second parameter associated with the secondary packet data and the primary packet data being successfully decoded at the DSDS UE, performing, by the DSDS UE, the HARQ feedback transmission with the wireless communication network.
Abstract: An electromagnetic (EM) sensor includes a front-end module, a memory, and a microcontroller unit. The front-end module generates an electromagnetic signal using externally introduced electromagnetic waves. The memory stores a first reference signal and a second reference signal generated from multiple probability models required to recognize the electromagnetic signal. The microcontroller unit compares the electromagnetic signal with the first reference signal and the second reference signal, to determine whether the electromagnetic signal is a valid signal.
Abstract: The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). A method for determining transmitting resources in vehicle to vehicle/pedestrian/infrastructure/network (V2X) communication is provided.
Abstract: A negative electrolyte for a lithium metal battery, the negative electrolyte including: a non-aqueous solvent comprising an ether solvent; a lithium salt having a concentration of about 1 molar to about 6 molar in the non-aqueous solvent; and a crosslinked product of a polymerizable oligomer, wherein the negative electrolyte has a gel or solid form.
Abstract: An electronic device includes a housing having a hole formed therein, an audio device inside the housing and communicating with an outside of the electronic device through the hole, a gas sensor inside the housing and communicating with the outside through the hole, a proximity sensor inside the housing, a wireless communication module inside the housing, and a processor inside the housing. The processor is configured to acquire data associated with air outside the electronic device by using the gas sensor, to recognize a user gesture of starting a proximity call by using the proximity sensor, and to calculate air quality of the outside air based on at least one of data acquired by the gas sensor before the proximity call starting gesture is recognized and data acquired by the gas sensor after a gesture of ending the proximity call is recognized. Other various embodiments are possible.
Type:
Grant
Filed:
December 4, 2018
Date of Patent:
February 2, 2021
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Bokyung Sim, Seunggoo Kang, Jeonggyu Jo, Dongil Son
Abstract: A three-dimensional semiconductor memory device includes a plurality of first insulating layers vertically stacked on a peripheral logic structure, second insulating layers stacked alternately with the first insulating layers, conductive layers stacked alternately with the first insulating layers and disposed on sidewalls of the second insulating layers, through-interconnections penetrating the first insulating layers and the second insulating layers so as to be connected to the peripheral logic structure, and a first conductive line electrically connected to a plurality of first conductive layers of the conductive layers.
Type:
Grant
Filed:
June 18, 2019
Date of Patent:
February 2, 2021
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Junhyoung Kim, Geunwon Lim, Kwang-soo Kim
Abstract: A fingerprint verification method and apparatus is disclosed. The fingerprint verification method may include obtaining an input fingerprint image, determining a matching region between the input fingerprint image and a registered fingerprint image, determining a similarity corresponding to the matching region, representing a determined indication of similarities between the input fingerprint image and the registered fingerprint image, relating the determined similarity to the matching region as represented in a matching region-based similarity, determining a result of a verification of the input fingerprint image based on the matching region-based similarity, and indicating the result of the verification.
Type:
Grant
Filed:
February 7, 2018
Date of Patent:
February 2, 2021
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Seon Min Rhee, Kyuhong Kim, Hana Lee, Changkyu Choi
Abstract: A memory device including a normal memory cell array including a first magneto-resistance memory cell that is connected to a first bit line, a first source line, and a first word line, and configured to receive a selection voltage through the first word line, a monitor memory cell array including a second magneto-resistance memory cell that is connected to a first signal line and a second signal line, a gate of a cell transistor of which is configured to receive a non-selection voltage, and a body bias generator configured to sense a leakage current flowing through the first signal line and control a body voltage provided to each of a body of a cell transistor of the first magneto-resistance memory cell and a body of the cell transistor of the second magneto-resistance memory cell based on the leakage current may be provided.
Type:
Grant
Filed:
April 22, 2019
Date of Patent:
February 2, 2021
Assignee:
Samsung Electronics Co. Ltd.
Inventors:
Artur Antonyan, Hyuntaek Jung, Suk-Soo Pyo
Abstract: A display device including an optical member, a display panel disposed above the optical member, and a plurality of light emitting units disposed below the optical member and configured to provide first color light to the optical member, in which the optical member includes a support substrate having upper and surfaces and overlapping the light emitting units, a quantum dot layer disposed on the support substrate and configured to convert the first color light into second color light and third color light, and a filter directly disposed on at least one of the upper surface and the lower surface of the support substrate, and having a first transmittance to the first color light having a first incident angle of 0 degrees and having a second transmittance greater than the first transmittance to the first color light having a second incident angle greater than the first incident angle.
Type:
Grant
Filed:
August 12, 2019
Date of Patent:
February 2, 2021
Assignee:
Samsung Display Co., Ltd.
Inventors:
Taewoo Lim, Dongwoo Kim, Minsu Kim, Cheonjae Maeng, Keunwoo Park, Seongyeon Lee, Hongbeom Lee
Abstract: A base station (BS) in a wireless communication system is provided. The BS comprises a processor configured to determine frequency units within a frequency range for a bandwidth of an operating carrier, wherein a listen-before-talk (LBT) operation is performed over each of the frequency units; and determine, for each of the frequency units, a set of intended spatial transmit (TX) parameters and a set of spatial receiver (RX) parameters of the LBT operation; and determine a subset of the frequency units for a downlink transmission based on the LBT operation performed over each of the frequency units; and a transceiver operably connected to processor, which is configured to transmit, to a user equipment (UE), downlink channels using the bandwidth corresponding to the determined subset of the frequency units.
Abstract: A display system includes a source device that outputs image-data and a sink device that performs a displaying operation based on the image-data. The sink device changes a frame-rate of a panel driving frame as the source device changes a frame-rate of an image frame. The sink device sets a first clock cycle starting point at which a first clock cycle of an emission on-off clock starts as a scan starting point of the panel driving frame when the first clock cycle starting point is consistent with an input starting point of image frame data. The sink device moves the input starting point to a second clock cycle starting point, at which a second clock cycle following the first clock cycle starts, and sets the second clock cycle starting point as the scan starting point when the first clock cycle starting point is inconsistent with the input starting point.
Abstract: An image sensor package includes a substrate, an image sensor chip disposed on the substrate, and an external force absorbing layer disposed between the substrate and the image sensor chip and having a first surface and a second surface opposite to the first surface. The image sensor package further includes an adhesive layer configured to bond the second surface of the external force absorbing layer to the substrate. The adhesive layer has a first modulus, and the external force absorbing layer has a second modulus different from the first modulus.
Abstract: A display panel includes a substrate having a first area and a second area, a non-display area surrounding the first area and the second area, and a display area surrounding the non-display area, a plurality of display elements arranged in the display area, and a plurality of signal lines electrically connected to the plurality of display elements, wherein the plurality of signal lines includes a first signal line and a second signal line neighboring each other and extending in a first direction, wherein the first signal line bypasses in the non-display area along a first side of the first area, and the second signal line bypasses in the non-display area along a second side of the first area, and wherein the first and second signal lines are asymmetrical with respect to a virtual central line through a center of the first area in the first direction.
Abstract: A method for performing actions by a wearable device is provided. The method includes detecting at least one signal indicating a movement of a muscle of the wrist, via an array of biometric sensors exposed through an inner peripheral surface of a substantially circular band of the wearable device, identifying an orientation of the wearable device corresponding to the at least one signal, and providing, based at least in part on the identification, a function corresponding to the orientation of the wearable device. The method further includes detecting, by the wearable device, an absolute orientation of the wearable device using at least one of an inertial sensor and the one or more body sensors. The method further includes dynamically performing an action, by the wearable device, based on a pre-stored mapping of the at least one physiological parameter and the absolute orientation of the wearable device.