Abstract: A system, method, and computer program product are provided for inserting a gap in information sent from a drive to a host device. In operation, one or more commands are received at a drive from a host device. Additionally, information is queued to send to the host device. Furthermore, a gap is inserted in the information to send to the host device such that the host device is capable of sending additional commands to the drive.
Abstract: A system, method, and computer program product are provided for sending failure information from a solid state drive (SSD) to a host device. In operation, an error is detected during an operation associated with a Serial ATA (SATA) solid state drive. Additionally, a command is received for failure information from a host device. Further, the failure information is sent from the solid state drive to the host device, the failure information including failure information associated with the solid state drive.
Abstract: A system, method, and computer program product are provided for providing data redundancy in a plurality of storage devices. In operation, storage commands are received for providing data redundancy in accordance with a first data redundancy scheme. Additionally, the storage commands are translated for providing the data redundancy in accordance with a second data redundancy scheme. Furthermore, the translated storage commands are outputted for providing the data redundancy in a plurality of storage devices.
Abstract: A system, method, and computer program product are provided for converting logical block address de-allocation information in a first format to a second format. In use, logical block address de-allocation information is received in a first format associated with a first protocol. Additionally, the logical block address de-allocation information in the first format is converted to a second format associated with a second protocol.
Abstract: A system, method, and computer program product are provided for providing data redundancy in a plurality of storage devices. In operation, a number of writes to a plurality of storage devices is reduced. Additionally, after the reducing, data redundancy is provided utilizing a data redundancy scheme.
Abstract: An apparatus, method, and computer program product are provided for identifying at least one aspect associated with a lifetime of memory. Further, an indicia is visually displayed reflecting the at least one aspect.
Abstract: A system, method, and computer program product are provided for increasing a lifetime of a plurality of blocks of memory. In operation, at least one factor that affects a lifetime of a plurality of blocks of memory is identified. Additionally, the plurality of blocks to write is selected, based on the at least one factor.
Abstract: A system, method, and computer program product are provided for reducing write operations in memory. In use, write operations to be performed on data stored in memory are identified. A difference is then determined between results of the write operations and the data stored in the memory. Difference information associated with the difference is stored in the memory. To this end, the write operations may be reduced, utilizing the difference information.
Abstract: A system, method, and computer program product are provided for writing data to different storage devices based on write frequency. In operation, a frequency in which data is written is identified. Additionally, a plurality of storage devices of different types is selected from to write the data, based on the frequency.
Abstract: A system, method, and computer program product are provided for delaying operations that reduce a lifetime of memory. In use, at least one aspect associated with a lifetime of memory is identified. To this end, at least one operation that reduces the lifetime of the memory is delayed, based on the aspect.
Abstract: An apparatus, method, and computer program product are provided for identifying at least one aspect associated with a lifetime of each of a plurality of memory devices. Further, data is moved between the plurality of memory devices, based on the at least one aspect.