Patents Assigned to Sandia Corporation
  • Patent number: 11162022
    Abstract: Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: November 2, 2021
    Assignees: CARBO CERAMICS INC., Sandia Corporation
    Inventors: Chad Cannan, Lewis Bartel, Terrence Palisch, David Aldridge
  • Patent number: 10326279
    Abstract: Systems and methods for identifying an island condition in a power distribution system and disconnecting distributed generators in the case of islanding. The systems and methods are used to enable reliable detection of island formation with high false-trip immunity, for any combination of distributed energy resources, and for distributed energy resources using grid support functions.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: June 18, 2019
    Assignees: Northern Plains Power Technologies, Sandia Corporation
    Inventors: Michael Ropp, Scott Perlenfein, Jason C. Neely, Sigifredo Gonzalez, Lee Joshua Rashkin
  • Patent number: 10267134
    Abstract: Methods and systems for determining subterranean fracture closure are disclosed herein. The methods can include electrically energizing a casing of a wellbore that extends from a surface of the earth into a subterranean formation having a fracture that is at least partially filled with an electrically conductive proppant and measuring a first electric field response at the surface or in an adjacent wellbore at a first time interval to provide a first field measurement. The methods can also include measuring a second electric field response at the surface or in the adjacent wellbore at a second time interval to provide a second field measurement and determining an increase in closure pressure on the electrically conductive proppant from a difference between the first and second field measurements.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: April 23, 2019
    Assignees: CARBO CERAMICS INC., SANDIA CORPORATION
    Inventors: Chad Cannan, Lewis Bartel, Terry Palisch, David Aldridge, Todd Roper, Steve Savoy, Daniel R. Mitchell
  • Patent number: 10186711
    Abstract: The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in proton exchange membrane fuel cells (PEM-FCs).
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: January 22, 2019
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Sandia Corporation
    Inventors: Tochi Tudor Nwoga, Kazuo Kawahara, Wen Li, Yujiang Song, John A. Shelnutt, James E. Miller, Craig John Medforth, Yukiyoshi Ueno, Tetsuo Kawamura
  • Patent number: 10131903
    Abstract: This invention provides methods and compositions for assembling biological constructs (e.g., plasmids, transformed cells, etc.). In certain embodiments the methods involve encapsulating separate components of the biological construct each in a fluid droplet confined in a fluid channel; optionally mixing droplets from different fluid channels to form a sequenced order of droplets carrying different components of the biological construct in a channel or chamber; and optionally combining two or more droplets each containing different components of the biological construct to permit the components to react with each other in one or more reactions contributing to the assembly of the biological construct.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: November 20, 2018
    Assignees: The Regents of the University of California, Sandia Corporation
    Inventors: Chieh Chang, Rajiv Bharadwaj, Anup K. Singh, Aarthi Chandrasekaran, Nathan J. Hillson
  • Patent number: 10031135
    Abstract: Viruses and other bioagents are of high medical and biodefense concern and their detection at concentrations well below the threshold necessary to cause health hazards continues to be a challenge with respect to sensitivity, specificity, and selectivity. Ideally, assays for accurate and real time detection of viral agents and other bioagents would not necessitate any pre-processing of the analyte, which would make them applicable for example to bodily fluids (blood, sputum) and man-made as well as naturally occurring bodies of water (pools, rivers). We describe herein a robust biosensor that combines the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: July 24, 2018
    Assignees: STC.UNM, SANDIA CORPORATION
    Inventors: Richard S. Larson, Brian Hjelle, Pam R. Hall, David C. Brown, Marco Bisoffi, Susan M. Brozik, Darren W. Branch, Thayne L. Edwards, David Wheeler
  • Patent number: 10022327
    Abstract: The present invention is directed to protocells for specific targeting of hepatocellular and other cancer cells which comprise a nanoporous silica core with a supported lipid bilayer; at least one agent which facilitates cancer cell death (such as a traditional small molecule, a macromolecular cargo (e.g.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: July 17, 2018
    Assignees: STC.UNM, Sandia Corporation
    Inventors: C. Jeffrey Brinker, Eric C. Carnes, Carlee Erin Ashley, Cheryl L. Willman
  • Patent number: 9958516
    Abstract: A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: May 1, 2018
    Assignees: ABQMR, Inc., Sandia Corporation, STC.UNM
    Inventors: Laurel Sillerud, Todd M. Alam, Andrew F. McDowell
  • Patent number: 9927549
    Abstract: Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: March 27, 2018
    Assignees: CARBO Ceramics Inc., Sandia Corporation
    Inventors: David F. Aldridge, Lewis C. Bartel
  • Publication number: 20180072572
    Abstract: The present invention provides a novel solution or route for metal phosphide (MPx) nanomaterials from the thermal decomposition of metal bis[bis(diisopropylphosphino)amide], M[N(PPri2)2]2, and/or single-source precursors. Synthetic routes to MPx nanomaterials may be used in energy applications including batteries, semiconductors, magnets, catalyst, lasers, inks, electrocatalysts and photodiodes.
    Type: Application
    Filed: April 8, 2016
    Publication date: March 15, 2018
    Applicants: STC.UNM, Sandia Corporation
    Inventors: Richard Alan Kemp, Diane Dickie, Bernadette A. Hernandez-Sanchez, Timothy N. Labert
  • Patent number: 9862982
    Abstract: The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: January 9, 2018
    Assignees: The Regents of the University of California, Sandia Corporation
    Inventors: Tao Zhang, Supratim Datta, Blake A. Simmons, Edward M. Rubin
  • Patent number: 9803182
    Abstract: The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: October 31, 2017
    Assignees: The Regents of the University of California, Sandia Corporation
    Inventors: John Gladden, Joshua Park, Steven Singer, Blake Simmons, Ken Sale
  • Patent number: 9765044
    Abstract: Methods and compositions are provided for synthesizing ionic liquids from lignin derived compounds comprising: contacting a starting material comprising lignin with a depolymerization agent to depolymerize the lignin and form a mixture of aldehyde containing compounds; contacting the mixture of aldehyde containing compounds with an amine under conditions suitable to convert the mixture of aldehyde containing compounds to a mixture of amine containing compounds; and contacting the mixture of amine containing compounds with an acid under conditions suitable to form an ammonium salt, thereby preparing the ionic liquid.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 19, 2017
    Assignees: The Regents of the University of California, Sandia Corporation
    Inventors: Aaron Socha, Seema Singh, Blake A. Simmons, Maxime Bergeron
  • Patent number: 9748415
    Abstract: A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality of metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: August 29, 2017
    Assignee: Sandia Corporation
    Inventors: Murat Okandan, Gregory N. Nielson, Jose Luis Cruz-Campa, Carlos Anthony Sanchez
  • Patent number: 9727976
    Abstract: Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: August 8, 2017
    Assignee: Sandia Corporation
    Inventors: David Nikolaus Perkins, Randolph Brost, Lawrence P. Ray
  • Patent number: 9725749
    Abstract: Glycoside hydrolases having at least two different hydrolytic activities are provided. In one embodiment, an isolated recombinant hydrolase having at least two activities selected from a group including asparagine derivatives, glutamine derivatives, and histidine derivatives is provided. Further, a method of generating free sugars from a mixture comprising asparagine derivatives, glutamine derivatives, and histidine derivatives is provided.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: August 8, 2017
    Assignees: The Regents of the University of California, Sandia Corporation
    Inventors: Zhiwei Chen, Gregory D. Friedland, Swapnil R. Chhabra, Dylan C. Chivian, Blake A. Simmons
  • Patent number: 9720080
    Abstract: A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: August 1, 2017
    Assignee: Sandia Corporation
    Inventors: Christopher T. Rodenbeck, Derek Young, Tina Chou, Lung-Hwa Hsieh, Kurt Conover, Richard Heintzleman
  • Patent number: 9720102
    Abstract: The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: August 1, 2017
    Assignee: Sandia Corporation
    Inventors: Ralph H. Page, F. Patrick Doty
  • Patent number: 9719908
    Abstract: A device for electrofracturing a material sample and analyzing the material sample is disclosed. The device simulates an in situ electrofracturing environment so as to obtain electrofractured material characteristics representative of field applications while allowing permeability testing of the fractured sample under in situ conditions.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: August 1, 2017
    Assignee: Sandia Corporation
    Inventors: Stephen J. Bauer, Steven F. Glover, Tom Pfeifle, Jiann-Cherng Su, Kenneth Martin Williamson, Scott Thomas Broome, William Payton Gardner, Gary Pena
  • Patent number: 9718748
    Abstract: The present invention relates to methods of employing a metal-organic framework (MOF) as a catalyst for cleaving chemical bonds. In particular instances, the MOF results in selective bond cleavage that results in hydrogenolyzis. Furthermore, the MOF catalyst can be reused in multiple cycles. Such MOF-based catalysts can be useful, e.g., to convert biomass components.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: August 1, 2017
    Assignee: Sandia Corporation
    Inventors: Mark D. Allendorf, Vitalie Stavila