Patents Assigned to Sandia Corporation
  • Patent number: 9337800
    Abstract: A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: May 10, 2016
    Assignee: Sandia Corporation
    Inventors: Roy H. Olsson, III, Kenneth Wojciechowski, Darren W. Branch
  • Patent number: 9336870
    Abstract: The present invention is directed generally to resistive random-access memory (RRAM or ReRAM) devices and systems, as well as methods of employing a thermal resistive model to understand and determine switching of such devices. In particular example, the method includes generating a power-resistance measurement for the memristor device and applying an isothermal model to the power-resistance measurement in order to determine one or more parameters of the device (e.g., filament state).
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: May 10, 2016
    Assignee: Sandia Corporation
    Inventors: Patrick R. Mickel, Conrad D. James, Andrew Lohn, Matthew Marinella, Alexander H. Hsia
  • Patent number: 9334444
    Abstract: The present invention relates to sorohalide compounds having formula A3B2X9, where A is an alkali metal, B is a rare earth metal, and X is a halogen. Optionally, the sorohalide includes a dopant D. Such undoped and doped sorohalides are useful as scintillation materials or phosphors for any number of uses, including for radiation detectors, solid-state light sources, gamma-ray spectroscopy, medical imaging, and drilling applications.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: May 10, 2016
    Assignee: Sandia Corporation
    Inventors: Pin Yang, Haoran Deng, F. Patrick Doty, Xiaowang Zhou
  • Patent number: 9329154
    Abstract: Sensing devices based on a surface acoustic wave (“SAW”) device coated with an absorbent crystalline or amorphous layer for detecting at least one chemical analyte in a gaseous carrier. Methods for detecting the presence of a chemical analyte in a gaseous carrier using such devices are also disclosed. The sensing devices and methods for their use may be configured for sensing chemical analytes selected from the group consisting of water vapor, carbon dioxide, methanol, ethanol, carbon monoxide, nitric oxide, nitrous oxide, organic amines, organic compounds containing NO2 groups, halogenated hydrocarbons, acetone, hexane, toluene, isopropanol, alcohols, alkanes, alkenes, benzene, functionalized aromatics, ammonia (NH3), phosgene (COCl2), sulfur mustard, nerve agents, sulfur dioxide, tetrahydrofuran (THF) and methyltertbutyl ether (MTBE) and combinations thereof.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: May 3, 2016
    Assignee: Sandia Corporation
    Inventors: Mark D. Allendorf, Alex Robinson
  • Patent number: 9329413
    Abstract: In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: May 3, 2016
    Assignee: Sandia Corporation
    Inventors: Christopher DeRose, Michael R. Watts
  • Patent number: 9324550
    Abstract: The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: April 26, 2016
    Assignee: Sandia Corporation
    Inventor: David Alexander Jones
  • Patent number: 9322042
    Abstract: The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: April 26, 2016
    Assignees: The Regents of the University of California, Sandia Corporation
    Inventors: Rajat Sapra, Supratim Datta, Zhiwei Chen, Bradley M. Holmes, Blake A. Simmons, Harvey W. Blanch
  • Patent number: 9322014
    Abstract: A system for enhancing a nucleic acid sample may include a one pump, a denaturing chamber; a microfluidic hydroxyapatite chromatography device configured for performing hydroxyapatite chromatography on the nucleic acid sample, a sample collector, and tubing connecting the pump with the denaturing chamber, the hydroxyapatite chromatography device and the sample collector such that the pump may be used to move the nucleic acid sample from the denaturing chamber to the hydroxyapatite chromatography device and then to the sample collector.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: April 26, 2016
    Assignee: Sandia Corporation
    Inventors: Victoria A. VanderNoot, Stanley Alan Langevin, Zachary Bent, Ronald F. Renzi, Scott M. Ferko, James L. Van De Vreugde, Todd Lane, Kamlesh Patel, Steven Branda
  • Patent number: 9315730
    Abstract: A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: April 19, 2016
    Assignee: Sandia Corporation
    Inventors: Yongliang Xiong, Yifeng Wang
  • Patent number: 9311444
    Abstract: A method and apparatus are provided for generating RTL code for a test-port interface of an integrated circuit. In an embodiment, a test-port table is provided as input data. A computer automatically parses the test-port table into data structures and analyzes it to determine input, output, local, and output-enable port names. The computer generates address-detect and test-enable logic constructed from combinational functions. The computer generates one-hot multiplexer logic for at least some of the output ports. The one-hot multiplexer logic for each port is generated so as to enable the port to toggle between data signals and test signals. The computer then completes the generation of the RTL code.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: April 12, 2016
    Assignee: Sandia Corporation
    Inventor: John Teifel
  • Patent number: 9311721
    Abstract: Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: April 12, 2016
    Assignee: Sandia Corporation
    Inventor: Thomas A. Loughry
  • Patent number: 9304129
    Abstract: Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: April 5, 2016
    Assignee: Sandia Corporation
    Inventors: Ulrich Y. Schaff, Chung-Yan Koh, Gregory J. Sommer
  • Patent number: 9304128
    Abstract: Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: April 5, 2016
    Assignee: Sandia Corporation
    Inventors: Chung-Yan Koh, Ulrich Y. Schaff, Gregory Jon Sommer
  • Patent number: 9304198
    Abstract: The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: April 5, 2016
    Assignee: Sandia Corporation
    Inventors: Armin W. Doerry, Brandeis Marquette
  • Patent number: 9297638
    Abstract: An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: March 29, 2016
    Assignees: Sandia Corporation, Research Foundation of The City of New York
    Inventors: Gregory Conrad Dyer, Eric A. Shaner, Gregory Aizin
  • Patent number: 9294085
    Abstract: A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: March 22, 2016
    Assignee: Sandia Corporation
    Inventors: Frederick R. Gruner, William A. Stygar
  • Patent number: 9294486
    Abstract: Embodiments of the invention describe systems and methods for malicious software detection and analysis. A binary executable comprising obfuscated malware on a host device may be received, and incident data indicating a time when the binary executable was received and identifying processes operating on the host device may be recorded. The binary executable is analyzed via a scalable plurality of execution environments, including one or more non-virtual execution environments and one or more virtual execution environments, to generate runtime data and deobfuscation data attributable to the binary executable. At least some of the runtime data and deobfuscation data attributable to the binary executable is stored in a shared database, while at least some of the incident data is stored in a private, non-shared database.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: March 22, 2016
    Assignee: Sandia Corporation
    Inventors: Ken Chiang, Levi Lloyd, Jonathan Crussell, Benjamin Sanders, Jeremy Lee Erickson, David Jakob Fritz
  • Patent number: 9293266
    Abstract: Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: March 22, 2016
    Assignees: Board of Regents, The University of Texas System, Sandia Corporation
    Inventors: Russell R. Chianelli, Karina Castillo, Vipin Gupta, Ali M. Qudah, Brenda Torres, Rajib E. Abujnah
  • Patent number: 9293627
    Abstract: The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: March 22, 2016
    Assignee: Sandia Corporation
    Inventors: Thomas Edwin Beechem, III, Stephen W. Howell, David W. Peters, Paul Davids, Taisuke Ohta
  • Patent number: 9291508
    Abstract: An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 22, 2016
    Assignee: Sandia Corporation
    Inventors: Grant Biedermann, Hayden James Evans McGuinness, Akash Rakholia, Yuan-Yu Jau, Peter Schwindt, David R. Wheeler