Patents Assigned to Sandia
  • Patent number: 5805365
    Abstract: A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.
    Type: Grant
    Filed: October 12, 1995
    Date of Patent: September 8, 1998
    Assignee: Sandia Corporation
    Inventor: William C. Sweatt
  • Patent number: 5804727
    Abstract: A method is described for determining and evaluating physical characteristics of a material. In particular, the present invention provides for determining and evaluating the anisotropic characteristics of materials, especially those resulting from such manufacturing processes as rolling, forming, extruding, drawing, forging, etc. In operation, a complex ultrasonic wave is created in the material of interest by any method. The wave form may be any combination of wave types and modes and is not limited to fundamental plate modes. The velocity of propagation of selected components which make up the complex ultrasonic wave are measured and evaluated to determine the physical characteristics of the material including, texture, strain/stress, grain size, crystal structure, etc.
    Type: Grant
    Filed: September 1, 1995
    Date of Patent: September 8, 1998
    Assignee: Sandia Corporation
    Inventors: Wei-yang Lu, Shermann Min
  • Patent number: 5798283
    Abstract: A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: August 25, 1998
    Assignee: Sandia Corporation
    Inventors: Stephen Montague, James H. Smith, Jeffry J. Sniegowski, Paul J. McWhorter
  • Patent number: 5798452
    Abstract: A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: August 25, 1998
    Assignee: Sandia Corporation
    Inventors: Stephen J. Martin, James J. Wiczer, Richard W. Cernosek, Gregory C. Frye, Charles T. Gebert, Leonard Casaus, Mary A. Mitchell
  • Patent number: 5795993
    Abstract: The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).
    Type: Grant
    Filed: November 29, 1995
    Date of Patent: August 18, 1998
    Assignee: Sandia Corporation
    Inventors: Kent B. Pfeifer, Andrea E. Hoyt, Gregory C. Frye
  • Patent number: 5795581
    Abstract: A method for releasing molecules (guest molecules) from the matrix formed by the structure of another molecule (host molecule) in a controllable manner has been invented. This method has many applications in science and industry. In addition, applications based on such molecular systems may revolutionize significant areas of medicine, in particular the treatment of cancer and of viral infection. Similar effects can also be obtained by controlled fragmentation of a source molecule, where the molecular fragments form the active principle.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: August 18, 1998
    Assignee: Sandia Corporation
    Inventors: Daniel J. Segalman, J. Shield Wallace
  • Patent number: 5793176
    Abstract: Linear and other features on a workpiece are tracked by measuring the fields generated between electrodes arrayed in pairs. One electrode in each pair operates as a transmitter and the other as a receiver, and both electrodes in a pair are arrayed on a carrier. By combining and subtracting fields between electrodes in one pair and between a transmitting electrode in one pair and a receiving electrode in another pair, information describing the location and orientation of the sensor relative to the workpiece in up to six degrees of freedom may be obtained. Typical applications will measure capacitance, but other impedance components may be measured as well. The sensor is designed to track a linear feature axis or a protrusion or pocket in a workpiece. Seams and ridges can be tracked by this non-contact sensor. The sensor output is useful for robotic applications.
    Type: Grant
    Filed: April 2, 1993
    Date of Patent: August 11, 1998
    Assignee: Sandia Corporation
    Inventor: James L. Novak
  • Patent number: 5793485
    Abstract: A resonant-cavity apparatus for cytometry or particle analysis. The apparatus comprises a resonant optical cavity having an analysis region within the cavity for containing one or more biological cells or dielectric particles to be analyzed. In the presence of a cell or particle, a light beam in the form of spontaneous emission or lasing is generated within the resonant optical cavity and is encoded with information about the cell or particle. An analysis means including a spectrometer and/or a pulse-height analyzer is provided within the apparatus for recovery of the information from the light beam to determine a size, shape, identification or other characteristics about the cells or particles being analyzed. The recovered information can be grouped in a multi-dimensional coordinate space for identification of particular types of cells or particles. In some embodiments of the apparatus, the resonant optical cavity can be formed, at least in part, from a vertical-cavity surface-emitting laser.
    Type: Grant
    Filed: January 13, 1997
    Date of Patent: August 11, 1998
    Assignee: Sandia Corporation
    Inventor: Paul L. Gourley
  • Patent number: 5791358
    Abstract: Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects' surfaces to accomplish a more thorough rinse than prior art troughs.
    Type: Grant
    Filed: November 20, 1996
    Date of Patent: August 11, 1998
    Assignee: Sandia Corporation
    Inventors: Timothy J. O'Hern, Thomas W. Grasser
  • Patent number: 5792280
    Abstract: A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: August 11, 1998
    Assignee: Sandia Corporation
    Inventors: Douglas S. Ruby, Paul A. Basore, W. Kent Schubert
  • Patent number: 5792941
    Abstract: An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the inventors that the kinetics are only at most a weak function of K(.alpha.,.theta.); moreover, a wide range of theoretical assumptions show comparable numerical values for K(.alpha.,.theta.). .gamma..div..mu. and h.sub.0 are the only parameters. With the depth of the groove being an experimentally controllable parameter, the ratio of .gamma..div..mu. is the only free parameter. The value of .gamma..div..mu. can be determined from plots of z.sup.2 v.
    Type: Grant
    Filed: October 8, 1996
    Date of Patent: August 11, 1998
    Assignee: Sandia Corporation
    Inventors: Robert R. Rye, Frederick G. Yost, J. Adin Mann, Jr.
  • Patent number: 5793478
    Abstract: An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.
    Type: Grant
    Filed: November 19, 1996
    Date of Patent: August 11, 1998
    Assignee: Sandia Corporation
    Inventors: Daniel J. Rader, Jaime N. Castaneda, Thomas W. Grasser, John E. Brockmann
  • Patent number: 5793230
    Abstract: A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger.
    Type: Grant
    Filed: February 26, 1997
    Date of Patent: August 11, 1998
    Assignee: Sandia Corporation
    Inventors: Dahlon D. Chu, Donald C. Thelen, Jr.
  • Patent number: 5789745
    Abstract: An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: August 4, 1998
    Assignee: Sandia Corporation
    Inventors: Stephen J. Martin, Michael A. Butler, Gregory C. Frye, W. Kent Schubert
  • Patent number: 5785191
    Abstract: A system and method for eliminating swing motions in gantry-style cranes while subject to operator control is presented. The present invention comprises an infinite impulse response ("IIR") filter and a proportional-integral ("PI") feedback controller (50). The IIR filter receives input signals (46) (commanded velocity or acceleration) from an operator input device (45) and transforms them into output signals (47) in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder (25). The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor (27). The present invention adjusts acceleration and deceleration to eliminate oscillations.
    Type: Grant
    Filed: May 15, 1996
    Date of Patent: July 28, 1998
    Assignee: Sandia Corporation
    Inventors: John T. Feddema, Ben J. Petterson, Rush D. Robinett, III
  • Patent number: 5786231
    Abstract: A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein.
    Type: Grant
    Filed: December 5, 1995
    Date of Patent: July 28, 1998
    Assignee: Sandia Corporation
    Inventors: William L. Warren, Karel J. R. Vanheusden, James R. Schwank, Daniel M. Fleetwood, Marty R. Shaneyfelt, Peter S. Winokur, Roderick A. B. Devine
  • Patent number: 5787187
    Abstract: The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: July 28, 1998
    Assignee: Sandia Corporation
    Inventors: Ann Marie Bouchard, Gordon Cecil Osbourn
  • Patent number: 5783340
    Abstract: A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: July 21, 1998
    Assignee: Sandia Corporation
    Inventors: Anthony J. Farino, Stephen Montague, Jeffry J. Sniegowski, James H. Smith, Paul J. McWhorter
  • Patent number: 5781017
    Abstract: An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors.
    Type: Grant
    Filed: April 26, 1996
    Date of Patent: July 14, 1998
    Assignee: Sandia Corporation
    Inventors: Edward I. Cole, Jr., Kenneth A. Peterson, Daniel L. Barton
  • Patent number: 5780867
    Abstract: A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs.
    Type: Grant
    Filed: March 7, 1996
    Date of Patent: July 14, 1998
    Assignee: Sandia Corporation
    Inventors: Ian J. Fritz, John F. Klem, Michael J. Hafich