Abstract: A 3D semiconductor memory is described having rail-stacks which define conductive lines and cells. The memory levels are organized in pairs with each pair showing common lines in adjacent levels.
Abstract: A high-voltage transistor and fabrication process in which the fabrication of the high-voltage transistor can be readily integrated into a conventional CMOS fabrication process. The high-voltage transistor of the invention includes a channel region formed beneath a portion of the gate electrode after the gate electrode has been formed on the surface of a semiconductor substrate. In a preferred embodiment, the channel region is formed by the angled ion implantation of dopant atoms using an edge of the gate electrode as a doping mask. The high-voltage transistor of the invention further includes a drain region that is spaced apart from the channel region by a portion of a well region and by an isolation region residing in the semiconductor substrate. By utilizing the process of the invention to fabricate the high-voltage transistor, the transistor can be integrated into an existing CMOS device with minimal allocation of additional substrate surface area.
Abstract: An improved method for fabricating a three dimensional monolithic memory with increased density. The method includes forming conductors preferably comprising tungsten, then filling and planarizing; above the conductors forming semiconductor elements preferably comprising two diode portions and an antifuse, then filling and planarizing; and continuing to form conductors and semiconductor elements in multiple stories of memories. The arrangement of processing steps and the choice of materials decreases aspect ratio of each memory cell, improving the reliability of gap fill and preventing etch undercut.
Abstract: A multi-level memory array is described employing rail-stacks. The rail-stacks include a conductor and semiconductor layers. The rail-stacks are generally separated by an insulating layer used to form antifuses. In one embodiment, one-half the diode is located in one rail-stack and the other half in the other rail-stack.
Abstract: A 3D semiconductor memory is described having rail-stacks which define conductive lines and cells. The memory levels are organized in pairs with each pair showing common lines in adjacent levels.
Abstract: A three dimensional circuit structure including tapered pillars between first and second signal lines. An apparatus including a first plurality of spaced apart coplanar conductors disposed in a first plane over a substrate; a second plurality of spaced apart coplanar conductors disposed in a second plane, the second plane parallel to and different from the first plane; and a plurality of cells disposed between one of the first conductors and one of the second conductors, wherein each of the plurality of cells have a re-entrant profile.
Type:
Grant
Filed:
September 26, 2002
Date of Patent:
July 4, 2006
Assignee:
Sandisk 3D LLC
Inventors:
Calvin K. Li, N. Johan Knall, Michael A. Vyvoda, James M. Cleeves, Vivek Subramanian