Abstract: The invention provides apheresis devices and their use for substantial removal of all types of cfDNA for treatment of various diseases and during perfusion of an organ and/or anatomical cavity, to limit the negative effects of circulating cfDNA during organ transplantation and thus improve the quality and survival of transplanted organs, and reduce unfavorable transplantation outcomes such as transplant dysfunction, ischemia-reperfusion injury, graft rejection, and organ failure.
Abstract: The invention provides methods of detecting substantially all types of cell free DNA (cfDNA) in biological samples, including nucleosome-bound cfDNA, exosome-bound cfDNA and unbound cfDNA (including double stranded DNA (dsDNA), single stranded DNA (ssDNA) and oligonucleotides), for diagnosis, monitoring and treatment of diseases caused by, or correlated with, increased levels of cfDNA.
Type:
Application
Filed:
October 2, 2020
Publication date:
February 15, 2024
Applicant:
SANTERSUS AG
Inventors:
Kirill SURKOV, Simon TALLETT, Andrew ASWANI
Abstract: The invention provides apheresis devices and their use for removal of substantially all types of cell free DNA (cfDNA) in patients' blood, including nucleosome-bound cfDNA, exosome-bound cfDNA and unbound cfDNA (including double stranded DNA (dsDNA), single stranded DNA (ssDNA) and oligonucleotides), to limit the negative effects of the circulating cfDNA and to treat various diseases.
Abstract: The invention provides apheresis devices and their use for removal of substantially all types of cell free DNA (cfDNA) in patients' blood, including nucleosome-bound cfDNA, exosome-bound cfDNA and unbound cfDNA (including double stranded DNA (dsDNA), single stranded DNA (ssDNA) and oligonucleotides), to limit the negative effects of the circulating cfDNA and to treat various diseases.
Abstract: The invention provides apheresis devices and their use for removal of substantially all types of cell free DNA (cfDNA) in patients' blood, including nucleosome-bound cfDNA, exosome-bound cfDNA and unbound cfDNA (including double stranded DNA (dsDNA), single stranded DNA (ssDNA) and oligonucleotides), to limit the negative effects of the circulating cfDNA and to treat various diseases.
Abstract: The invention provides apheresis devices and their use for removal of substantially all types of cell free DNA (cfDNA) in patients' blood, including nucleosome-bound cfDNA, exosome-bound cfDNA and unbound cfDNA (including double stranded DNA (dsDNA), single stranded DNA (ssDNA) and oligonucleotides), to limit the negative effects of the circulating cfDNA and to treat various diseases.
Abstract: The invention provides apheresis devices and their use for removal of substantially all types of cell free DNA (cfDNA) in patients’ blood, including nucleosome-bound cfDNA, exosome-bound cfDNA and unbound cfDNA (including double stranded DNA (dsDNA), single stranded DNA (ssDNA) and oligonucleotides), to limit the negative effects of the circulating cfDNA and to treat various diseases.
Abstract: The invention provides apheresis devices and their use for substantial removal of all types of cfDNA for treatment of various diseases and during perfusion of an organ and/or anatomical cavity, to limit the negative effects of circulating cfDNA during organ transplantation and thus improve the quality and survival of transplanted organs, and reduce unfavorable transplantation outcomes such as transplant dysfunction, ischemia-reperfusion injury, graft rejection, and organ failure.
Abstract: The invention provides apheresis devices and their use for removal of substantially all types of cell free DNA (cfDNA) in patients' blood, including nucleosome-bound cfDNA, exosome-bound cfDNA and unbound cfDNA (including double stranded DNA (dsDNA), single stranded DNA (ssDNA) and oligonucleotides), to limit the negative effects of the circulating cfDNA and to treat various diseases.
Abstract: The invention provides apheresis devices and their use for removal of substantially all types of cell free DNA (cfDNA) in patients' blood, including nucleosome-bound cfDNA, exosome-bound cfDNA and unbound cfDNA (including double stranded DNA (dsDNA), single stranded DNA (ssDNA) and oligonucleotides), to limit the negative effects of the circulating cfDNA and to treat various diseases.