Patents Assigned to SAS Institute
  • Publication number: 20230041773
    Abstract: An apparatus includes a processor to: generate variants of an experiment design based on varied parameters; for each variant, estimate terms based on the model, and derive an optimality value; present a table of the variants including a column for each varied parameter and a column for the optimality value, a row for each variant, and a bar graph for each column depicting a distribution of the values therein; present function controls operable to select a function to perform on row(s) of the table in response to selection of a bar of a bar graph of a column; in response to selection of a function, change the current function to the selected function; and in response to a selection of a bar of a bar graph of a column, perform the current function on row(s) based on instances of the value associated with selected bar.
    Type: Application
    Filed: August 8, 2022
    Publication date: February 9, 2023
    Applicant: SAS Institute Inc.
    Inventors: Ryan Adam Lekivetz, Joseph Albert Morgan, Caleb Bridges King, Bradley Allen Jones, Mark Wallace Bailey, Jacob Davis Rhyne
  • Patent number: 11550643
    Abstract: An event stream processing (ESP) model is read that describes computational processes. (A) An event block object is received. (B) A new measurement value, a timestamp value, and a sensor identifier are extracted. (C) An in-memory data store is updated with the new measurement value, the timestamp value, and the sensor identifier. (A) through (C) are repeated until an output update time is reached. When the output update time is reached, data stored in the in-memory data store is processed and updated using data enrichment windows to define enriched data values that are output. The data enrichment windows include a gate window before each window that uses values computed by more than one window. The gate window sends a trigger to a next window when each value of the more than one window has been computed. The enrichment windows are included in the ESP model.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: January 10, 2023
    Assignee: SAS Institute Inc.
    Inventors: Steven William Enck, Charles Michael Cavalier, Sarah Jeanette Gauby, Scott Joseph Kolodzieski
  • Patent number: 11544767
    Abstract: A computing device determines a recommendation. A confidence matrix is computed using a predefined weight value. (A) A first parameter matrix is updated using the confidence matrix, a predefined response matrix, a first step-size parameter value, and a first direction matrix. The predefined response matrix includes a predefined response value by each user to each item and at least one matrix value for which a user has not provided a response to an item. (B) A second parameter matrix is updated using the confidence matrix, the predefined response matrix, a second step-size parameter value, and a second direction matrix. (C) An objective function value is updated based on the first and second parameter matrices. (D) The first and second parameter matrices are trained by repeating (A) through (C). The first and second parameter matrices output for use in predicting a recommended item for a requesting user.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: January 3, 2023
    Assignee: SAS Institute Inc.
    Inventors: Xuejun Liao, Patrick Nathan Koch
  • Publication number: 20220414288
    Abstract: An apparatus includes processor(s) to: receive a request to test goodness-of-fit of a spatial process model; generate a KD tree from observed spatial point dataset including locations within a region at which instances of an event occurred; derive, from the observed spatial point dataset, multiple quadrats into which the region is divided; receive, from multiple processors, current levels of availability of processing resources including quantities of currently available execution threads; select, based on the quantity of currently available execution threads, a subset of the multiple processors to perform multiple iterations of a portion of the test in parallel; provide, to each processor of the subset, the KD tree, the spatial process model, and the multiple quadrats; receive, from each processor of the subset, per-quadrat data portions indicative of results of an iteration; derive a goodness-of-fit statistic from the per-quadrat data portions; and transmit an indication of goodness-of-fit to another device
    Type: Application
    Filed: November 26, 2021
    Publication date: December 29, 2022
    Applicant: SAS Institute Inc.
    Inventor: Pradeep Mohan
  • Patent number: 11537366
    Abstract: A computing device create a user interface application. A user interface (UI) tag is read in a UI application. The UI tag is executed to identify a UI template tag. The identified UI template tag is executed to define a top-level container initializer for the UI application and to define a plurality of widget initializers for inclusion in a top-level container rendered using the top-level container initializer. The top-level container is rendered in a display using the top-level container initializer. Each widget of a plurality of widgets in the rendered top-level container is rendered using the defined plurality of widget initializers to create a UI.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: December 27, 2022
    Assignee: SAS Institute Inc.
    Inventors: Karen Christine Jirak, Edward Fredrick Matthews, II, James Chunan Yang
  • Patent number: 11531907
    Abstract: A computing device trains a machine state predictive model. A generative adversarial network with an autoencoder is trained using a first plurality of observation vectors. Each observation vector of the first plurality of observation vectors includes state variable values for state variables and an action variable value for an action variable. The state variables define a machine state, wherein the action variable defines a next action taken in response to the machine state. The first plurality of observation vectors successively defines sequential machine states to manufacture a product. A second plurality of observation vectors is generated using the trained generative adversarial network with the autoencoder. A machine state machine learning model is trained to predict a subsequent machine state using the first plurality of observation vectors and the generated second plurality of observation vectors. A description of the machine state machine learning model is output.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: December 20, 2022
    Assignee: SAS Institute Inc.
    Inventors: Afshin Oroojlooyjadid, Mohammadreza Nazari, Davood Hajinezhad, Amirhassan Fallah Dizche, Jorge Manuel Gomes da Silva, Jonathan Lee Walker, Hardi Desai, Robert Blanchard, Varunraj Valsaraj, Ruiwen Zhang, Weichen Wang, Ye Liu, Hamoon Azizsoltani, Prathaban Mookiah
  • Patent number: 11531845
    Abstract: A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: December 20, 2022
    Assignee: SAS Institute Inc.
    Inventors: Xin Jiang Hunt, Xinmin Wu, Ralph Walter Abbey
  • Publication number: 20220392047
    Abstract: Embodiments are directed to techniques for image content extraction. Some embodiments include extracting contextually structured data from document images, such as by automatically identifying document layout, document data, document metadata, and/or correlations therebetween in a document image, for instance. Some embodiments utilize breakpoints to enable the system to match different documents with internal variations to a common template. Several embodiments include extracting contextually structured data from table images, such as gridded and non-gridded tables. Many embodiments are directed to generating and utilizing a document template database for automatically extracting document image contents into a contextually structured format. Several embodiments are directed to automatically identifying and associating document metadata with corresponding document data in a document image to generate a machine-facilitated annotation of the document image.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Applicant: SAS Institute Inc.
    Inventors: David James Wheaton, Stuart Dakari Cooke, III, William Robert Nadolski
  • Patent number: 11501116
    Abstract: A computing device accesses a machine learning model trained on training data of first bonding operations (e.g., a ball and/or stitch bond). The first bonding operations comprise operations to bond a first set of multiple wires to a first set of surfaces. The machine learning model is trained by supervised learning. The device receives input data indicating process data generated from measurements of second bonding operations. The second bonding operations comprise operations to bond a second set of multiple wires to a second set of surfaces. The device weights the input data according to the machine learning model. The device generates an anomaly predictor indicating a risk for an anomaly occurrence in the second bonding operations based on weighting the input data according to the machine learning model. The device outputs the anomaly predictor to control the second bonding operations.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: November 15, 2022
    Assignee: SAS Institute Inc.
    Inventors: Deovrat Vijay Kakde, Haoyu Wang, Anya Mary McGuirk
  • Publication number: 20220350944
    Abstract: One example described herein involves a system receiving task data and distribution criteria for a state space model from a client device. The task data can indicate a type of sequential Monte Carlo (SMC) task to be implemented. The distribution criteria can include an initial distribution, a transition distribution, and a measurement distribution for the state space model. The system can generate a set of program functions based on the task data and the distribution criteria. The system can then execute an SMC module to generate a distribution and a corresponding summary, where the SMC module is configured to call the set of program functions during execution of an SMC process and apply the results returned from the set of program functions in one or more subsequent steps of the SMC process. The system can then transmit an electronic communication to the client device indicating the distribution and its corresponding summary.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 3, 2022
    Applicant: SAS Institute Inc.
    Inventors: Xilong Chen, Yang Zhao, Sylvie T. Kabisa, David Bruce Elsheimer
  • Publication number: 20220335947
    Abstract: An apparatus includes at least one processor to, in response to a request to perform speech-to-text conversion: perform a pause detection technique including analyzing speech audio to identify pauses, and analyzing lengths of the pauses to identify likely sentence pauses; perform a speaker diarization technique including dividing the speech audio into fragments, analyzing vocal characteristics of speech sounds of each fragment to identify a speaker of a set of speakers, and identifying instances of a change in speakers between each temporally consecutive pair of fragments to identify likely speaker changes; and perform speech-to-text operations including dividing the speech audio into segments based on at least the likely sentence pauses and likely speaker changes, using at least an acoustic model with each segment to identify likely speech sounds in the speech audio, and generating a transcript of the speech audio based at least on the likely speech sounds.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 20, 2022
    Applicant: SAS Institute Inc.
    Inventors: XIAOLONG LI, Samuel Norris Henderson, Xiaozhuo Cheng, Xu Yang
  • Publication number: 20220327660
    Abstract: An apparatus includes a processor to: receive an indication of ability of a node device to provide a resource for executing application routines, at least one identifier of at least one image including an executable routine stored within a cache of the node device, and an indication of at least one revision level of the at least one image; analyze the ability to provide the resource; in response to being able to support execution of the application routine, identify a first image in a repository; compare identifiers to determine whether there is a second image including a matching executable routine; in response to a match, compare revision levels; and in response to the revision level of the most recent version of the first image being more recent, retrieve the most recent version of the first image from the repository, and store it within the node device.
    Type: Application
    Filed: December 23, 2021
    Publication date: October 13, 2022
    Applicant: SAS Institute Inc.
    Inventor: Jody Bridges Steadman
  • Patent number: 11443198
    Abstract: A computing device learns a directed acyclic graph (DAG). An SSCP matrix is computed from variable values defined for observation vectors. A topological order vector is initialized that defines a topological order for the variables. A loss value is computed using the topological order vector and the SSCP matrix. (A) A neighbor determination method is selected. (B) A next topological order vector is determined relative to the initialized topological order vector using the neighbor determination method. (C) A loss value is computed using the next topological order vector and the SSCP matrix. (D) (B) and (C) are repeated until each topological order vector is determined in (B) based on the neighbor determination method. A best topological vector is determined from each next topological order vector based on having a minimum value for the computed loss value. An adjacency matrix is computed using the best topological vector and the SSCP matrix.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: September 13, 2022
    Assignee: SAS Institute, Inc.
    Inventors: Xilong Chen, Tao Huang, Jan Chvosta
  • Patent number: 11436444
    Abstract: A computing device trains a fair machine learning model. A prediction model is trained to predict a target value. For a number of iterations, a weight vector is computed using the bound value based on fairness constraints defined for a fairness measure type; a weight value is assigned to each observation vector based on the target value and a sensitive attribute value; the prediction model is trained with each weighted observation vector to predict the target value; and a conditional moments vector is computed based on the fairness constraints and the target and sensitive attribute values. Conditional moments difference values are computed. When the conditional moments difference values indicate to adjust the bound value, the bound value is updated and the process is repeated with the bound value replaced with the updated bound value until the conditional moments difference values indicate no further adjustment of the bound value is needed.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: September 6, 2022
    Assignee: SAS Institute Inc.
    Inventors: Xinmin Wu, Xin Jiang Hunt
  • Patent number: 11436438
    Abstract: (A) Conditional vectors are defined. (B) Latent observation vectors are generated using a predefined noise distribution function. (C) A forward propagation of a generator model is executed with the conditional vectors and the latent observation vectors as input to generate an output vector. (D) A forward propagation of a decoder model of a trained autoencoder model is executed with the generated output vector as input to generate a plurality of decoded vectors. (E) Transformed observation vectors are selected from transformed data based on the defined plurality of conditional vectors. (F) A forward propagation of a discriminator model is executed with the transformed observation vectors, the conditional vectors, and the decoded vectors as input to predict whether each transformed observation vector and each decoded vector is real or fake. (G) The discriminator and generator models are updated and (A) through (G) are repeated until training is complete.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: September 6, 2022
    Assignee: SAS Institute Inc.
    Inventors: Ruiwen Zhang, Weichen Wang, Jorge Manuel Gomes da Silva, Ye Liu, Hamoon Azizsoltani, Prathaban Mookiah
  • Publication number: 20220261281
    Abstract: An apparatus includes a processor to receive a request to provide a view of an object associated with a job flow, and in response to determining that the object is associated with a task type requiring access to a particular resource not accessible to a first interpretation routine: store, within a job queue, a job flow generation request message to cause generation of a job flow definition the defines another job flow for generating the requested view; within a task container in which a second interpretation routine that does have access to the particular resource is executed, generate the job flow definition; store, within a task queue, a job flow generation completion message that includes a copy of the job flow definition; use the job flow definition to perform the other job flow to generate the requested view; and transmit the requested view to the requesting device.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 18, 2022
    Applicant: SAS Institute Inc.
    Inventors: Henry Gabriel Victor Bequet, Ronald Earl Stogner, Eric Jian Yang, Chaowang "Ricky" Zhang
  • Patent number: 11416712
    Abstract: A computing device generates synthetic tabular data.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: August 16, 2022
    Assignee: SAS Institute, Inc.
    Inventors: Amirhassan Fallah Dizche, Ye Liu, Xin Jiang Hunt, Jorge Manuel Gomes da Silva
  • Publication number: 20220253335
    Abstract: An apparatus includes a processor to: receive a request to perform a job flow; within a performance container, based on the data dependencies among a set of tasks of the job flow, derive an order of performance of the set of tasks that includes a subset able to be performed in parallel, and derive a quantity of task containers to enable the parallel performance of the subset; based on the derived quantity of task containers, derive a quantity of virtual machines (VMs) to enable the parallel performance of the subset; provide, to a VM allocation routine, an indication of a need for provision of the quantity of VMs; and store, within a task queue, multiple task routine execution request messages to enable parallel execution of task routines within the quantity of task containers to cause the parallel performance of the subset.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 11, 2022
    Applicant: SAS Institute Inc.
    Inventors: Henry Gabriel Victor Bequet, Ronald Earl Stogner, Eric Jian Yang, Chaowang "Ricky" Zhang
  • Patent number: 11403527
    Abstract: A computing device trains a neural network machine learning model. A forward propagation of a first neural network is executed. A backward propagation of the first neural network is executed from a last layer to a last convolution layer to compute a gradient vector. A discriminative localization map is computed for each observation vector with the computed gradient vector using a discriminative localization map function. An activation threshold value is selected for each observation vector from at least two different values based on a prediction error of the first neural network. A biased feature map is computed for each observation vector based on the activation threshold value selected for each observation vector. A masked observation vector is computed for each observation vector using the biased feature map. A forward and a backward propagation of a second neural network is executed a predefined number of iterations using the masked observation vector.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: August 2, 2022
    Assignee: SAS Institute Inc.
    Inventors: Xinmin Wu, Yingjian Wang, Xiangqian Hu
  • Patent number: 11379743
    Abstract: A computing device determines a recommendation. (A) A first parameter matrix is updated using a first direction matrix and a first step-size parameter value that is greater than one. The first parameter matrix includes a row dimension equal to a number of users of a plurality of users included in a ratings matrix and the ratings matrix includes a missing matrix value. (B) A second parameter matrix is updated using a second direction matrix and a second step-size parameter value that is greater than one. The second parameter matrix includes a column dimension equal to a number of items of a plurality of items included in the ratings matrix. (C) An objective function value is updated based on the first parameter matrix and the second parameter matrix. (D) (A) through (C) are repeated until the first parameter matrix and the second parameter matrix satisfy a convergence test.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: July 5, 2022
    Assignee: SAS Institute Inc.
    Inventors: Xuejun Liao, Patrick Nathan Koch, Shunping Huang, Yan Xu