Abstract: A joystick device having a grip assembly pivotably connected to a base assembly. The base assembly having sensing elements that detect the movement of the grip assembly as it pivots about the base assembly. Disposed within the base assembly and the sensing elements is a microprocessor. The microprocessor verifies an output signal prior to transmitting to a remote controller.
Abstract: A hydrostatic module is disclosed, including a pair of shafts rotatably supported by a frame. Two yokes are pivotally mounted on the frame, each having complimentary surfaces to the other yoke and to the frame, minimizing the space occupied by the yokes. Stop means are provided on the yokes and on the frame to limit the pivotal movement of the yokes. A hydrostatic power unit is carried by each yoke, each connected to one of the shafts. A control system, having a single piece control housing containing servo pistons, pivots the yokes. The servo pistons independently determine the orientation of the yokes. A single piece fluid control porting plate is secured to the control housing to route hydraulic fluid to multiple locations within the control housing. A fluid manifold serves as a main structural element, with intimate proximity between the manifold and the control housing allowing simplified fluid exchange therebetween.
Type:
Grant
Filed:
November 26, 2003
Date of Patent:
February 14, 2006
Assignee:
Sauer-Danfoss Inc.
Inventors:
John Fleming, Scott Meyer, Doug Kardell, Christopher P. Masini
Abstract: Disclosed is a closed cavity piston made from a metal injection molding process. The piston has an elongated cylindrical body with a first end that is adapted to receive a slipper. The piston also has at least one hollow compartment and a hollow stem that transports hydraulic fluid. After the metal injection molding process an end cap having a central opening is sinterbonded to the second end of the body. The central opening aligns with the hollow stem to provide a fluid outlet.
Type:
Grant
Filed:
June 29, 2004
Date of Patent:
February 7, 2006
Assignee:
Sauer-Danfoss Inc.
Inventors:
Daryl I. Rober, Michael A. Betz, Robert J. Klinkel
Abstract: An improved sealing ring for a hydrostatic transmission having a sideface with an irregular shaped chamfered portion such that when pressure reversal occurs within a hydrostatic transmission the seal will immediately shuttle across the mounting groove of the hydrostatic transmission by preventing a uniform extrusion within the clearance space between the manifold of the hydrostatic transmission and the yoke of the hydrostatic transmission.
Abstract: An axial piston machine having a swashplate or an oblique axis which can be adjusted by means of servopistons and has a valve segment and an adjustment unit for the electrically proportional adjustment of the volumetric displacement. The adjustment unit comprises proportional magnets which can be activated electrically, and a control piston for controlling the oil pressure which moves the servopistons. The proportional magnets act on the control piston along a common tappet axis, a feedback device for feeding back the current swashplate or oblique-axis valve-segment position to the control piston being provided. The feedback device comprises spring levers 6, 6? which can pivot about an axis, the spring levers 6, 6? each being mounted on the pivot axis 5 with a bearing shell 15, which are each composed of two component shells which support the spring lever 6, 6? at separate locations on the pivot axis 5, and which each essentially enclose a half-space about the pivot axis 5.
Type:
Application
Filed:
April 14, 2005
Publication date:
January 12, 2006
Applicant:
Sauer-Danfoss Inc.
Inventors:
Reinhardt Thoms, Carsten Fiebing, Bernd Hames, Martin Wustefeld
Abstract: An axial piston machine having a swash plate or oblique axis which can be adjusted by means of servopistons and has a valve segment and an adjustment unit for the electrically proportional adjustment of the volumetric displacement, the adjustment unit comprising proportional magnets which can be activated electrically, and a control piston for controlling the oil pressure which moves the servopistons, the proportional magnets acting on this control piston along a common tappet axis. A feedback device for feeding back the current swash plate or oblique axis valve segment position is provided. The feedback device comprises spring levers and a pointer which can be pivoted about an axis, the pointer which is embodied as a two-armed lever engaging in the control piston on one side of the pivot axis, and between the spring levers on the other side.
Type:
Application
Filed:
April 14, 2005
Publication date:
January 12, 2006
Applicant:
Sauer-Danfoss Inc.
Inventors:
Reinhardt Thoms, Carsten Fiebing, Bernd Hames, Martin Wustefeld
Abstract: A hydrostatic module is disclosed, including a pair of shafts rotatably supported by a frame. Two yokes are pivotally mounted on the frame, each having complimentary surfaces to the other yoke and to the frame, minimizing the space occupied by the yokes. Stop means are provided on the yokes and on the frame to limit the pivotal movement of the yokes. A hydrostatic power unit is carried by each yoke, each connected to one of the shafts. A control system, having a single piece control housing containing servo pistons, pivots the yokes. The servo pistons independently determine the orientation of the yokes. A single piece fluid control porting plate is secured to the control housing to route hydraulic fluid to multiple locations within the control housing. A fluid manifold serves as a main structural element, with intimate proximity between the manifold and the control housing allowing simplified fluid exchange therebetween.
Type:
Application
Filed:
September 23, 2005
Publication date:
January 12, 2006
Applicant:
SAUER-DANFOSS INC.
Inventors:
John FLEMING, Scott MEYER, Doug KARDELL, Christopher MASINI
Abstract: A hydrostatic cylinder block having a split cylinder block with a slipper hold-down created by breaking down the cylinder block into its basic geometries through near net shaping technology. The cylinder block is broken down into four separate components: a hub, a wave spring, a cylinder block body, and a base plate. Each component is created using near net shaping technologies. The geometries are then placed together to create the completed cylinder block wherein the wave spring separates the hub from the block body to provide an improved slipper hold down force.
Abstract: Disclosed is a closed cavity piston made from a metal injection molding process. The piston has an elongated cylindrical body with a first end that is adapted to receive a slipper. The piston also has at least one hollow compartment and a hollow stem that transports hydraulic fluid. After the metal injection molding process an end cap having a central opening is sinterbonded to the second end of the body. The central opening aligns with the hollow stem to provide a fluid outlet.
Type:
Application
Filed:
June 29, 2004
Publication date:
December 29, 2005
Applicant:
SAUER-DANFOSS INC.
Inventors:
Daryl Rober, Michael Betz, Robert Klinkel
Abstract: A hydrostatic propulsion system includes a hydrostatic circuit fluidly connecting left front and right front motors in parallel with an outlet of a pump, left rear and right rear motors in parallel with an inlet of the pump, left front motor and right rear motor in series, and the right front motor and left rear motor in series. A valve system has a first relief valve line providing flow from a right rear motor inlet side to a left rear motor inlet side, and a second relief valve line providing flow from a left rear motor inlet side to a right rear motor inlet side. A first check valve line provides flow from a right rear motor outlet side to the right rear motor inlet side, and a second check valve line provides flow from a left rear motor outlet side to the left rear motor inlet side.
Abstract: A valve arrangement in a hydraulic circuit comprises a longitudinal duct 3 and a transverse duct 2. A throttle slide 10 can be displaced in the direction of the longitudinal duct 3. Arranged in the throttle slide 10 is a valve piston 25, by means of which the flow through the hollow throttle slide 10 can be enabled or blocked. The flow of hydraulic fluid takes place through two groups of passage holes 33a, 35a, which are arranged in the throttle slide 10. The interaction of pressure and flow direction of the hydraulic fluid, and also the restoring force of a slide spring 20 and a piston spring 30, achieves a situation where hydraulic fluid can flow through the valve arrangement in both directions but that a throttling action occurs only when the hydraulic fluid flows from the transfer duct 2 to the longitudinal duct 3 under increased pressure.
Abstract: A selectable detent relief valve of this invention is used to operate a hydraulic detent mechanism on a manually operated spool valve. This design has three modes of operation, no-detent, continuous detent and kick-out detent. The no-detent position allows flow to pass through the relief valve, from a first port to a second port and bypass the relief function. The pressure created, disengages the detent mechanism in the spool valve. The spool always returns to neutral position as long as pressure is present. The continuous detent position blocks the flow from a first port to a second port. The kick-out detent position allows flow to pass from the first port to the second port to override (kick-out) the detent mechanism in the spool when the pressure is greater than 2600 psi.
Type:
Grant
Filed:
April 18, 2003
Date of Patent:
December 20, 2005
Assignees:
Sauer-Danfoss Inc., Deere and Company
Inventors:
Dennis O. Courtright, John P. Tow, David L. Sigl
Abstract: A circuit that provides for a high side NFET gate driver that uses a circuit using only common capacitors, diodes, resistors, and transistors to create a high side NFET gate driver. The system is operated so that when there is a high input the NFET will turn off and when there is a low input the NFET will turn on.
Abstract: A transmission has an HMT which is in parallel with an HST both driving two planetaries which are used for forward/reverse and for differential steer. A two or three mode HMT is created by having a first HST in parallel with two or three mechanical power paths defined by separate clutches. One clutch has a speed reversing gear to produce reverse output speed. A four-element planetary sums the parallel flow and delivers variable speed and torque to two output shafts. The differential steer is created by two planetaries connected with the outputs of the HMT and a second HST. The planetaries have a speed reversing gear on one power path connection. The second HST controls the differential speed between the output shafts by adding speed to one and subtracting speed from the other.
Abstract: A dual check and high pressure relief valve that is able to perform the function of a hydrostatic high pressure relief valve and a check valve. The new valve has two poppets separated by a spring that are within two seats within a guide and secured by a plug. By adjusting the seats the relief pressure setting is set. The dual check and high pressure relief valve has three separate passageways that allow fluid flow between different combinations of the passages depending upon the function desired within the hydrostatic circuit. A dashpot is also included between the two poppets to provide positive dampening of the system.
Abstract: A combination of a bull nose type and slipper type axial piston pumps. The pseudo slipper axial piston pump has an elongated piston body with a bore disposed therethrough. The bore has a spring within to create a hold down mechanism. Swivelably connected to the piston body is a pseudo slipper that engages an anti-frictional thrust bearing having first and second race elements in parallel relation with a bearing element therebetween. The anti-frictional thrust bearing then controls the angle of the swashplate.
Abstract: An electrical conductor is provided for a fluid filled motor having a housing. The electrical conductor comprises insulating elements received by a passage extending through the housing, and a terminal bolt passing through the insulating elements. The electrical conductor further comprises sealing means between the terminal bolt, insulating elements, and the housing, and a fastening nut secured to the terminal bolt compressing the sealing means to seal against fluid flow through the passage. A method of sealing said electrical conductor through the housing of a fluid filled motor also is provided.
Abstract: The invention relates to a hydrostatic displacer unit with a pivoting mechanism for two conveying directions for the continuous variation of the stroke of displacement pistons and with a servo system by means of which the pivoting mechanism can be moved in opposite pivoting directions. The servo system comprises at least two servocylinders, by means of which servopjstons which actuate the pivoting mechanism can be moved, and an adjusting device in each case with a pressure-reducing valve for each servocylinder. The control pistons of the pressure-reducing valves are coupled mechanically along a common axis of movement by means of a spring arrangement.
Abstract: In the housing 1 of a hydraulic machine, the pressure Pi acts in the chamber 2. For this purpose, a passage opening 4 is provided, which is formed as a valve seat 5. A valve body 6 can be displaced longitudinally in the housing 1 and forms a pressure-tight spring chamber for an inner valve spring 21. The spring chamber is connected to the chamber 2 via a pressure equalizing hole 9. The prestress of the inner valve spring 21 can be set by means of a setting screw 18. In addition, there is an outer valve spring 22. Both the valve springs load the valve body 6 with the effect of closing it. The pressure equalizing valve described combines a compact design with an advantageous flow characteristic. When a maximum value of p1 is reached, the valve body 6 lifts off the valve seat 5 and hydraulic fluid from the chamber 2 flows away via the valve chamber 3.
Type:
Application
Filed:
February 18, 2005
Publication date:
September 29, 2005
Applicant:
Sauer-Danfoss Inc.
Inventors:
Reinhardt Thoms, Bernd Hames, Markus Reimer
Abstract: Arranged in a hydraulic circuit is a valve with an L-shaped duct arrangement, which is formed by a transverse duct 2 and a longitudinal duct 3. Formed in extension of the longitudinal duct 3 is a holding and guiding bore 4, in which a throttling element, comprising a throttle slide 10 and a valve piston 21 that can be displaced therein, can be displaced longitudinally. The valve piston 21 has a passage hole 25, which is connected to the interior of the throttling element and two proportionate annular chambers 17a and 17b. Of these, the proportionate annular chamber 17b is connected to a pilot control valve via a control duct 19. Depending on the direction and pressure of the hydraulic fluid flowing through the L-shaped duct arrangement, the throttling element is moved in or out and extended or compressed in the process.