Abstract: A tool (20) has a machine-side machine connection (21) for connecting the tool to a machine tool (1) for driving the tool in rotation (27) about a rotation axis (29) and for advancing (26) the tool relative to a workpiece, a workpiece-side tool head (22) having one or more cutting edges (25) for machining a workpiece, wherein the diameter (D) of the tool head is greater than 20 mm and wherein the cutting edges (25) of the tool (20) are arranged such that they travel over an area perpendicular to the rotation axis (29), a vibration unit (23) which is designed to set the tool head into rotary vibration (28) about the rotation axis (29), and a power receiving means (24) for wirelessly receiving supplied energy and for supplying electrical energy to the vibration unit (23).
Abstract: In a method for machining a workpiece, a cutting tool is guided relative to the workpiece, with a vibration being superposed, the amplitude of which is at least 5 ?m. A supply circuit for a piezo actuator of a vibrating tool generates a voltage at the voltage output, which has a direct component and an alternating component. A supply system for a piezo actuator of a vibrating tool has the above-mentioned supply circuit which is connected to a secondary coil that is coupled to a primary coil.
Abstract: A tool (10) for processing a workpiece in a processing machine has a connecting portion (11) which is at the machine side during operation and is preferably standardized, for connecting the tool with a numerically controlled machine tool (30), a plasma duct (44) for conducting a generated plasma, and an outlet portion (13) which is at the workpiece side during operation and is disposed at the end of the duct (44), and which comprises one or a plurality of outlets (22) for supplying the plasma to a workpiece surface.
Abstract: A tool (20) has a machine-side machine connection (21) for connecting the tool to a machine tool (1) for driving the tool in rotation (27) about a rotation axis (29) and for advancing (26) the tool relative to a workpiece, a workpiece-side tool head (22) having one or more cutting edges (25) for machining a workpiece, wherein the diameter (D) of the tool head is greater than 20 mm and wherein the cutting edges (25) of the tool (20) are arranged such that they travel over an area perpendicular to the rotation axis (29), a vibration unit (23) which is designed to set the tool head into rotary vibration (28) about the rotation axis (29), and a power receiving means (24) for wirelessly receiving supplied energy and for supplying electrical energy to the vibration unit (23).
Abstract: A tool (10) for processing a workpiece in a processing machine has a connecting portion (11) which is at the machine side during operation and is preferably standardized, for connecting the tool with a numerically controlled machine tool (30), a plasma duct (44) for conducting a generated plasma, and an outlet portion (13) which is at the workpiece side during operation and is disposed at the end of the duct (44), and which comprises one or a plurality of outlets (22) for supplying the plasma to a workpiece surface.
Abstract: In a method for machining a workpiece, a cutting tool is guided relative to the workpiece, with a vibration being superposed, the amplitude of which is at least 5 ?m. A supply circuit for a piezo actuator of a vibrating tool generates a voltage at the voltage output, which has a direct component and an alternating component. A supply system for a piezo actuator of a vibrating tool has the above-mentioned supply circuit which is connected to a secondary coil that is coupled to a primary coil.
Abstract: In a method for machining a workpiece using a tool, the tool engages with the workpiece and between the two a cutting motion is induced. Furthermore, a relative first vibration motion between workpiece and tool, which is superimposed on the cutting motion, is induced in such a way that one or more characteristic values of the first vibration motion and one or more characteristic values of the cutting motion are adjusted in relation to one another. The superimposed vibration motion can also be induced in such a way that distinctive surface zones of the workpiece are generated.