Abstract: The invention relates to a method for treating an aqueous fluid, comprising bringing into contact the aqueous fluid with a fluidised bed of powdered activated carbon, and separating the aqueous fluid from the bed of powdered activated carbon, including a step of managing the fluidised bed of powdered activated carbon. The management step comprises the extraction of a fraction of the fluidised bed of powdered activated carbon in the form of sludge, at least a separation of the sludge extracted in the previous step so as to obtain a fraction having an insoluble index HCl which is higher than that of the sludge before separation by at least 5 percentage points, and a reinjection of said fraction into the fluidised bed of powdered activated carbon.
Abstract: The present invention relates to a method for removing pollution from water containing organic micropollutants by adsorption on granular activated carbon in a treatment reactor (1) having rising flow and an expanded bed, so as to reduce a previously set percentage of micropollutants, making it possible to specifically determine the weight or the volume of granular activated carbon which is optimal (necessary and sufficient) in the reactor in order to obtain said previously set reduction percentage of organic micropollutants.
Abstract: The invention relates to a method for treating an aqueous fluid, comprising bringing into contact the aqueous fluid with a fluidised bed of powdered activated carbon, and separating the aqueous fluid from the bed of powdered activated carbon, including a step of managing the fluidised bed of powdered activated carbon. The management step comprises the extraction of a fraction of the fluidised bed of powdered activated carbon in the form of sludge, at least a separation of the sludge extracted in the previous step so as to obtain a fraction having an insoluble index HCl which is higher than that of the sludge before separation by at least 5 percentage points, and a reinjection of said fraction into the fluidised bed of powdered activated carbon.
Abstract: The present invention relates to a treatment installation of aqueous fluid, in particular to ensure elimination of organic micropollutants and natural organic matter, comprising a single reactor (10) for treatment of aqueous fluid by contact with a fluidized bed of coagulated and flocculated powdered activated carbon, operating in ascending flow, said reactor being equipped with injection means of new powdered activated carbon, coagulant and polymer, arranged to define three distinct operating zones in the reactor: a first arranged zone (A) at the base of the reactor to ensure intake and homogeneous distribution of the aqueous fluid pre-treated by contact with coagulant and polymer, a second zone, surmounting the first, constituted by the fluidized bed of coagulated and flocculated powdered activated carbon (B), and a third zone (C), arranged in the top part of the reactor for separation and recovery of the purified aqueous liquid.
Abstract: An electromagnetic relay includes at least one permanent magnet provided with pole pieces and a soft magnetic armature the ends of which cooperate with the pole pieces. The pole shoes are electrically insulated from each other and serve as fixed contacts. In the rest position of the armature, contact forces are obtained from the attraction force exerted by the permanent magnet. In order to exploit the total available permanent magnet force as contact force while, at the same time, achieving high responsiveness and resistance to mechanical stresses and shocks, the armature ends or the ends of the pole pieces facing away from the magnet poles are provided with contact springs which cooperate with the respective opposite pole pieces or armature ends to form contact couples so that, when the armature is switched-over, contact is made first through the contact spring or springs and then, upon bending of the actuated contact spring or springs, the respective armature end engages the pole pieces.
Type:
Grant
Filed:
October 27, 1983
Date of Patent:
February 18, 1986
Assignees:
Matsushita Electric Works, Ltd., Hans Saur