Patents Assigned to Scantinel Photonics GmbH
  • Patent number: 12204147
    Abstract: An integrated on-chip polarization rotator splitter (26) comprises a waveguide polarization rotator (54) having a first and a second layer (62) that form a rib waveguide (66) together and are both made of silicon nitride. The first layer (62) has a first, a second and a third section. The first layer (64) has a first width (w1) that increases in the first section (S1), is constant in the second section (S1) and decreases in the third section (S3). The second layer (64) has a second width (w2) that continuously increases. The polarization rotator splitter (26) further includes a waveguide polarization splitter (61) comprising a first strip waveguide (71) and a second strip waveguide (72) that are separated by a gap (74). The first and second strip waveguides (71, 72) are also made of silicon nitride. The first and second strip waveguide (71, 72) form an asymmetric evanescent direction coupler.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: January 21, 2025
    Assignee: Scantinel Photonics GmbH
    Inventor: Sandeep Ummethala
  • Patent number: 12111396
    Abstract: A device for scanning Frequency-Modulated Continuous Wave LiDAR range measurement comprises a light source that produces light having a varying frequency, a splitter that splits the light into reference light and output light, and a distribution matrix (36) that distributes the output light among a plurality of free space couplers that outcouple the output light into free space. A plurality of optical waveguides guide input light that was reflected at an object. A detector detects a superposition of the input light with the reference light, and a calculation unit determines the range to the object from the superposition detected by the detector. The device further comprises a common optical waveguide that is optically connected to the plurality of optical waveguides and the detector so that input light that is guided in any of the optical waveguides propagates through the common optical waveguide towards the detector without passing the distribution matrix.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: October 8, 2024
    Assignee: Scantinel Photonics GmbH
    Inventors: Sandeep Ummethala, Naser Hosseini, Vladimir Davydenko
  • Patent number: 11237254
    Abstract: A device for scanning measurement of a distance to an object has a light source, which generates an optical output signal having a time-varying frequency. The device includes multiple optical processing units, which are connected optically in parallel to the light source. Each processing unit has an optical distribution matrix including multiple optical switches that distribute optical output signals selectively onto different optical waveguides. Optical output signals are outcoupled into the free space via free space couplers and optical output signals reflected on the object are coupled as optical measurement signals into the waveguides. A detector detects a superposition of the optical measurement signal and the optical output signal generated by the light source. A circulator directs optical output signals supplied by the light source to the distribution matrix and optical measurement signals coming from the distribution matrix to the detector.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: February 1, 2022
    Assignee: Scantinel Photonics GmbH
    Inventor: Vladimir Davydenko
  • Patent number: 11009593
    Abstract: A device for scanning measurement of a distance to an object has a light source, which generates an optical output signal having a time-varying frequency. The device includes multiple optical processing units, which are connected optically in parallel to the light source. Each processing unit has an optical distribution matrix including multiple optical switches that distribute optical output signals selectively onto different optical waveguides. Optical output signals are outcoupled into the free space via free space couplers and optical output signals reflected on the object are coupled as optical measurement signals into the waveguides. A detector detects a superposition of the optical measurement signal and the optical output signal generated by the light source. A circulator directs optical output signals supplied by the light source to the distribution matrix and optical measurement signals coming from the distribution matrix to the detector.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: May 18, 2021
    Assignee: Scantinel Photonics GmbH
    Inventor: Vladimir Davydenko