Patents Assigned to Schlumberger Norge AS
  • Publication number: 20130235974
    Abstract: An x-ray fluorescence apparatus for measuring properties of a sample fluid, the apparatus comprising a housing having an inlet and an outlet; a test chamber disposed within the housing, the test chamber comprising an injection port in fluid communication with the inlet; a slide disposed within the test chamber, the slide comprising a sample cavity; and a test port; an x-ray fluorescence spectrometer disposed within the housing, and at least one motor operatively coupled to the slide of the test chamber. Also, a method of testing a fluid, the method comprising injecting a fluid through an injection port of a test chamber into a sample cavity of a slide; moving the slide laterally within the test chamber to an intermediate position; moving the slide laterally within the test chamber to a test position; and actuating an x-ray fluorescence spectrometer to sample the fluid within the sample cavity when the slide is in the test position.
    Type: Application
    Filed: March 28, 2013
    Publication date: September 12, 2013
    Applicant: SCHLUMBERGER NORGE AS
    Inventors: Tore Stock, Egil Ronaes, Thomas Hilton
  • Publication number: 20130207283
    Abstract: A flotation unit for purifying water, comprising at least a separator tank, a supply duct to a tank inlet, outlets for gas, oil and water from the tank, and a gas injector located in the supply duct, said gas injector comprising a venturi section having an inner diameter and a cross-sectional area smaller than a cross-sectional area of the supply duct, an ejector arranged in the venturi section and having an outer side facing an inside surface of the venturi section, an inner side facing a longitudinal centre axis of the venturi section, a downstream side, and a upstream side, the ejector comprising an annular gas distribution chamber and a plurality of gas outlets arranged along a side of the ejector and connected to the gas distribution chamber, and a gas inlet for supplying gas to the gas distribution chamber, wherein the ejector has an outer diameter which is smaller than the inner diameter of the venturi section.
    Type: Application
    Filed: April 8, 2011
    Publication date: August 15, 2013
    Applicant: SCHLUMBERGER NORGE AS
    Inventors: Karsten Rabe, Lars Hardli
  • Patent number: 8440077
    Abstract: A combined degassing and flotation tank for separation of a water influent containing considerable amounts of oil and gas. A rotational flow is created in the tank which forces the lighter components such as oil and gas droplets towards an inner concentric cylindrical wall where they coalesce and rise to the surface of the liquid and are removed via the outlet. The heavier particles are forced down and sink to the lower part where they can be removed as a sludge. The water is discharged via an outlet in the lower part of the tank. The combined degassing and flotation tank is particular suited for use in oil production at sea for removal of oil and gases from water streams before the water is returned to the sea.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: May 14, 2013
    Assignee: Schlumberger Norge AS
    Inventor: Stein Egil Oserød
  • Patent number: 8427640
    Abstract: A method for measuring particle size distribution in a fluid material, involving inserting a laser beam instrument directly in the fluid flow line, wherein the laser beam instrument focuses a laser beam on a window directly coupled with the fluid flow line, wherein the fluid flow line comprises a fluid having a plurality of particles of different sizes, measuring a diameter of at least one particle in the fluid flow line by reflectance of the at least one particle as the at least one particle passes through the focused laser beam, and determining a duration of reflection of the at least one particle, and obtaining a count of particles in each of a pre-set range group of particle sizes, wherein the count of particles is used to determine particle size distribution in the fluid flow line.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: April 23, 2013
    Assignees: M-I L.L.C., Schlumberger Norge AS
    Inventors: Egil Ronaes, Michael A. Freeman
  • Patent number: 8425777
    Abstract: A method of separating includes mixing a fluid into a mixture that has been separated from an oil well stream and that includes water, oil, and gas. The mixture including the fluid is fed into a separator and allowed to separate into a water phase and an oil/fluid phase. The cleaned water phase is removed from the separator via an outlet for water. The oil/fluid phase is subjected to a separation step separating the oil/fluid into an oil phase and a gaseous phase, from which gaseous phase the fluid is recovered by a condensation step and recycled for injection into the mixture. The separator is a liquid-liquid/gas separator in which the pressure is in the range of 0.5 bar to 25 bar, while the mixture including the fluid is separated into the water phase and an oil/gas phase.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: April 23, 2013
    Assignee: Schlumberger Norge AS
    Inventor: Jorn Folkvang
  • Patent number: 8392121
    Abstract: A system for monitoring fluids at a drilling location, the system including a viscometer (210) having a heating cup and a pump (211) in clued communication with the heating cup, wherein the pump is configured to provide a flow of fluid from a fluid line inlet to the heating cup. The system also including a cleaning fluid tank (214) including communication with the heating cup, wherein the pump is configured to provide a flow of cleaning fluid from the cleaning fluid tank to the heating cup, and a system controller (217) configured to provide instructions to the pump for controlling the flow of cleaning fluid from the cleaning fluid tanks to the heating cup.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 5, 2013
    Assignees: M-I L.L.C., Schlumberger Norge AS
    Inventors: Mario Zamora, Tore Stock
  • Patent number: 8277547
    Abstract: A separator tank comprises an essentially cylindrical vertical tank (1) having an upper part (6) and a lower part (7), a tangentially arranged inlet (2) for fluid in the upper part of the tank, at least one first outlet (4) in the upper part of the tank, at least one second outlet (3) in the lower part of the tank, and means (12) for calming a stream around the second outlet. An inner annular wall (5) has a first opening (8) at an upper end of said inner annular wall to allow communication between the upper part and the lower part of the tank. The separator tank comprises a rod-shaped vortex eye breaker (11) extending vertically at the center of the tank in order to improve the capacity of the tank.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: October 2, 2012
    Assignee: Schlumberger Norge AS
    Inventor: Jorn Folkvang
  • Patent number: 8235123
    Abstract: The invention comprises a sealing body (15) separating device) which can be used to separate fluids in risers used in offshore oil production from drilling vessels at the sea surface. The invention is characterized in that the sealing body (15) can be placed in position above the wellhead (13) using several appropriate methods and, in an especially preferred application, by utilizing an installation tool (27) which is not sealing against the inner wall of the riser and which contains a suitable positioning means (28), and that the body (15) which forms a seal against the inner wall of the riser separates fluids during the replacement of drilling fluid with water and of water with drilling fluid. The body (15) can be displaced using hydraulic force upwards in the longitudinal direction of the riser in that fluid is pumped at a relatively high pressure down the externally located smaller pipes (9, 10, 11) of the riser.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: August 7, 2012
    Assignee: Schlumberger Norge AS
    Inventors: Øyvind Stokka, Helge Krohn
  • Patent number: 8119000
    Abstract: A combined degassing and flotation tank for separation of a water influent containing considerable amounts of oil and gas. A rotational flow is created in the tank which forces the lighter components such as oil and gas droplets towards an inner concentric cylindrical wall where they coalesce and rise to the surface of the liquid and are removed via the outlet. The heavier parts are forced down where the heavy particles sink to the lower part where they can be removed as a sludge. The water is discharged via an outlet in the lower part of the tank. The combined degassing and flotation tank is particular suited for use in oil production at sea for removal of oil and gases from water streams before the water is returned to the sea.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: February 21, 2012
    Assignee: Schlumberger Norge AS
    Inventor: Stein Egil Oserød
  • Patent number: 8110024
    Abstract: A separator tank (1) comprising an essentially cylindrical vertical tank, a tangentially arranged inlet (3) in an upper part (9) of the tank, at least one first outlet (4) for oil and gas in the upper part of the tank, and at least one second outlet (5) for water in a lower part of the tank. A vortex zone (7) comprises a downward protruding conical frusta shaped wall (8) with an opening (11) at the lower end to allow communication between the upper and lower part of the tank. A helical spiralling vane is disposed on the upward directed part of said conical frusta shaped wall.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: February 7, 2012
    Assignee: Schlumberger Norge AS
    Inventor: Jorn Folkvang
  • Patent number: 8105421
    Abstract: A well fluid separator tank comprises an essentially cylindrical vertical tank (1) having an upper part (6) and a lower part (7) divided by an upward protruding conical frusta shaped wall (5), a tangentially arranged inlet (2) for fluid in the upper part of the tank, at least one first outlet (4) in the upper part of the tank, at least one second outlet (3) in the lower part of the tank, and means (12) for calming a stream around the second outlet. The upward protruding conical frusta shaped wall (5) has a first opening (8) at an upper end of said upward protruding conical frusta shaped wall to allow communication between the upper part and the lower part of the tank. The conical frusta shaped wall (5) has an inclination (9) so that the angle between the wall of the tank and the upper side of the conical frusta shaped wall is in the range from 15° to 70°.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: January 31, 2012
    Assignee: Schlumberger Norge AS
    Inventor: Jorn Folkvang
  • Patent number: 8088286
    Abstract: A gravity separator includes a vessel within which a mixture containing water, oil, and gas can separate under gravity to form vertically discrete oil and water layers and a gas phase. An inlet duct communicates with a vessel entrance for the mixture containing water, oil, and gas. The inlet duct of the gravity separator includes a gas injector that injects a gaseous medium in a volume in the range of from 0.01-1.9 Sm3 of the gaseous medium per 1 m3 of the mixture into the mixture containing water, oil, and gas.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: January 3, 2012
    Assignee: Schlumberger Norge AS
    Inventor: Jorn Folkvang
  • Publication number: 20110284027
    Abstract: A method for cleaning a reactor, the method including circulating a fluid inside the reactor, pumping the fluid from the reactor into an inlet of a tank cleaner, and removing solids from the fluid to produce a clean fluid. The method further includes transferring the clean fluid to the reactor and transferring pneumatically the removed solids to a pressurized vessel. Also, a method for transferring spent granular material, the method including providing a vacuum system disposed at a hydrocarbon production site to remove spent material from a reactor, transferring the spent material through the vacuum system into a pressurized vessel, and conveying pneumatically the spent material from the pressurized vessel to a second pressurized vessel.
    Type: Application
    Filed: January 27, 2010
    Publication date: November 24, 2011
    Applicants: M-I L.L.C., SCHLUMBERGER NORGE AS, M-I DRILLING FLUIDS UK LIMITED
    Inventors: Gordon M. Logan, Jan Thore Eia, Martin Hunter, Richard Bingham, Colin Lauder
  • Patent number: 8043419
    Abstract: A separator tank comprises an essentially cylindrical vertical tank (1) having an upper part (6) and a lower part (7), a tangentially arranged inlet (2) for fluid in the upper part of the tank, at least one first outlet (4) in the upper part of the tank, at least one second outlet (3) in the lower part of the tank, and means (12) for calming a stream around the second outlet. An inner annular wall (5) has a first opening (8) at an upper end of said inner annular wall to allow communication between the upper part and the lower part of the tank. The separator tank comprises a rod-shaped vortex eye breaker (11) extending vertically at the center of the tank in order to improve the capacity of the tank.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: October 25, 2011
    Assignee: Schlumberger Norge AS
    Inventor: Jorn Folkvang
  • Publication number: 20110220354
    Abstract: A water injection system that includes a primary water injection line; an injection fluid supply tank; a high pressure injection pump in fluid communication with the injection fluid supply and primary water injection line for pumping injection fluid in injection fluid supply tank through the primary water injection line; a polymer gel supply tank; and a high pressure chemical injection pump in fluid communication with the polymer gel supply tank and the water injection line configured to pump polymer gel having a viscosity of at least about 50,000 cP (at 20° C. measured using a Bohlin Rheometer CSR 50, cone and plate measuring system CP 4°/40 mm, single shear rate 1/s) in the polymer gel supply tank into the water injection line for mixture with injection fluid is disclosed.
    Type: Application
    Filed: September 17, 2009
    Publication date: September 15, 2011
    Applicants: SCHLUMBERGER NORGE AS, STATOIL ASA
    Inventors: Torbjørn Tenold Eikaas, Jan Erik Solbakken, Egil Sunde
  • Publication number: 20110192595
    Abstract: A method for measuring particle size distribution in a fluid material, involving inserting a laser beam instrument directly in the fluid flow line, wherein the laser beam instrument focuses a laser beam on a window directly coupled with the fluid flow line, wherein the fluid flow line comprises a fluid having a plurality of particles of different sizes, measuring a diameter of at least one particle in the fluid flow line by reflectance of the at least one particle as the at least one particle passes through the focused laser beam, and determining a duration of reflection of the at least one particle, and obtaining a count of particles in each of a pre-set range group of particle sizes, wherein the count of particles is used to determine particle size distribution in the fluid flow line.
    Type: Application
    Filed: October 21, 2009
    Publication date: August 11, 2011
    Applicants: M-I L.L.C., SCHLUMBERGER NORGE AS
    Inventors: Egil Ronaes, Michael A. Freeman
  • Publication number: 20110190438
    Abstract: A method of improving the cold flow properties of a paraffin-containing fluid that includes admixing an effective amount of a polymer comprising cyclic amide and long chain alkyl functionality is disclosed.
    Type: Application
    Filed: July 3, 2009
    Publication date: August 4, 2011
    Applicant: SCHLUMBERGER NORGE AS
    Inventors: Raquel Rodriguez Gonzalez, Jostein Djuve, Anders Grinrod
  • Publication number: 20110162838
    Abstract: A method of transferring proppant materials, wherein the method includes providing a first pressurized container (102) containing proppant materials on a first vessel (106). The method also includes connecting the first pressurized container (102) on the first vessel (106) to a second container (102) on a second vessel (114) and transferring pneumatically, proppant materials from the first pressurized container (102) on the first vessel (106) to the second container (102) on the second vessel (114). Also, a method of transferring proppant materials, the method including removing a wellbore fluid comprising excess proppant materials from a well, and screening the excess proppant materials from the wellbore fluid. The method also includes transferring the excess proppant materials to a first pressurized container (102) and transferring pneumatically, the excess proppant materials from the first pressurized container to a second pressurized container.
    Type: Application
    Filed: September 4, 2009
    Publication date: July 7, 2011
    Applicant: SCHLUMBERGER NORGE AS
    Inventors: John Mackenzie, Peter Wright, Jan Thore Eia