Abstract: A method for machining a workpiece includes using a multi-axis robot to lift a tool head from a magazine. The robot attaches the tool head to an end of a drill tube. The drill tube is then rotated and longitudinally translated to machine the workpiece. The tool head is withdrawn from the machined workpiece longitudinally by moving the drill tube. The robot is used to disconnect the tool head, replace the disconnected tool head into a magazine and withdraw a different tool head from the magazine for attachment to the drill tube.
Type:
Grant
Filed:
April 10, 2018
Date of Patent:
June 7, 2022
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Christopher Fitzgerald, E-Kiang Soh, Jiawei Dong, Chintankumar Bharatkumar Shah
Abstract: A method of determining properties of a fluid having an oil phase, a water phase, and an emulsion phase between the oil phase and water phase includes emitting an electromagnetic wave into the fluid, measuring an amplitude of a reflection of the electromagnetic wave off an interface between the oil phase in order to determine a height of a coalescing portion of the oil/emulsion interface. A height of a creaming portion of the emulsion/water interface is then determined using the coalescing portion height, total fluid height and water-in-liquid ratio. A thickness of the emulsion phase is determined based on the difference between coalescing and creaming portion height.
Type:
Grant
Filed:
June 21, 2017
Date of Patent:
June 7, 2022
Assignee:
Schlumberger Technology Corporation
Inventors:
Francis Dominique Allouche, Mathilde Jan
Abstract: The disclosure relates to a method of determining at least a property of a material situated behind a casing of a borehole, wherein an image of a imaging parameter of the material, such as acoustic impedance, has been obtained. The method comprising identifying zones of the image corresponding to disturbance zones, based in particular on values of the imaging parameters or other measured parameters, deleting the data of the imaging parameter in each of the disturbance zones, reconstructing for each zone, data of the imaging parameter from the data of imaging parameter at the neighboring zones, and determining at least a property of the material based on the reconstructed image.
Abstract: Apparatus and method for performing split stream operations with pressure exchangers. An example method may include operating a mixer to form a stream of concentrated dirty fluid, operating a first pump to form a pressurized stream of first clean fluid, operating a second pump to form a pressurized stream of second clean fluid, and transferring the pressurized stream of first clean fluid and the stream of concentrated dirty fluid through a plurality of pressure exchangers to pressurize the stream of concentrated dirty fluid. Thereafter, the method may further include combining the pressurized stream of concentrated dirty fluid with the pressurized stream of second clean fluid to form a pressurized stream of diluted dirty fluid, and injecting the pressurized stream of diluted dirty fluid into a wellbore during a subterranean well treatment operation.
Abstract: The present disclosure relates to a method that includes generating a first pulse at a first position along a geological formation with a plurality of antennae, wherein the first pulse comprises a Can-Purcell-Meiboom-Gill (CPMG) sequence, and wherein each antenna of the plurality of antennae is configured to generate NMR data via transmitting and receiving pulses into the geological formation.
Abstract: Methods, apparatus, systems, and articles of manufacture are disclosed to measure a formation feature. An example apparatus includes a pre-processor to compare a first measurement obtained from a first sensor included in a logging tool at a first depth at a first time and a second measurement obtained from a second sensor included in the logging tool at the first depth at a second time. The example apparatus also include a semblance calculator to: calculate a correction factor based on a difference between the first measurement and the second measurement; and calculate a third measurement based on the correction factor and a fourth measurement obtained from the first sensor at a second depth at the second time. The example apparatus also includes a report generator to generate a report including the third measurement.
Type:
Grant
Filed:
May 14, 2019
Date of Patent:
May 31, 2022
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Jean-Christophe Auchere, Hiroshi Hori, Adam Pedrycz, Bharat Narasimhan
Abstract: A fluid and a method for treating a subterranean formation penetrated by a wellbore. The method provides for injecting a treatment fluid for hydraulic fracturing, wherein the treatment fluid contains a low viscosity carrier fluid, a proppant dispersed in the low viscosity carrier fluid and a fiber blend with different stiffnesses that have silicone finishing. The method provides for improved dispersion of fibers, reduces the proppant settling rate and reduces the probability of fiber bridging in hydraulic fractures.
Abstract: A well system includes a perforating gun having shaped charges and a detonator to controllably detonate the shaped charges. The well system further includes a propulsion head coupled to the perforating gun. The propulsion head is operable to apply thrust to the perforating gun such that the well system is self-propelling.
Abstract: Changes to the vibrational frequencies of a drill string or BHA are monitored for prognostic health monitoring purposes. When one or more orders of resonance frequencies deviate from a baseline frequency, the magnitude of the deviation, and possibly the rate of deviation, is evaluated. When the deviation exceeds a threshold value, an alert is triggered. The alert may be triggered by downhole processing of the vibration data and conveyed to an operator to allow changes in operational parameters or removal of the component from the wellbore. The alert may instead be triggered by post-run processing of stored and dumped data, that can be used to evaluate whether the tool can be re-run, or whether it should be inspected, repaired, or scrapped.
Type:
Grant
Filed:
March 3, 2020
Date of Patent:
May 31, 2022
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Adam Ian Bowler, Mauro Caresta, Benjamin Peter Jeffryes
Abstract: A method can include receiving measurements of a fluid mixture where the measurements are acquired by at least one downhole tool; performing a multiphysics inversion of the measurements to generate nuclear parameter values for the fluid mixture; performing a multivariate interpolation using the generated nuclear parameter values that accounts for intermolecular interactions in the fluid mixture; and determining a composition of the fluid mixture based on the multivariate interpolation.
Type:
Grant
Filed:
January 17, 2019
Date of Patent:
May 31, 2022
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Vitor Villar De Andrade E Silva, John Rasmus
Abstract: A method sequence for handling tubulars into or out of a wellbore, the method comprising: moving a tubular string into or out of a wellbore via a top drive; moving tubular stands to and from a setback position and a stand handoff position via a transfer bridge racker and a setback guide arm; moving tubular stands to and from the stand handoff position and a well center position via a tubular delivery arm and a lower stabilizing arm; building stands and breaking down stands offline via a mousehole and operating a roughneck on joints between the tubular stands and the tubular string.
Type:
Grant
Filed:
March 23, 2020
Date of Patent:
May 31, 2022
Assignee:
Schlumberger Technology Corporation
Inventors:
Jan Alvaer, Christian Doennestad Nilssen, Joe Rodney Berry
Abstract: A method of perforating a wellbore is described herein. The method includes lowering a perforating wellbore tool into the wellbore proximate a formation to be perforated, anchoring the perforating wellbore tool by setting an anchoring tool, perforating the formation, creating a low pressure chamber in the perforating wellbore tool, and unsetting the anchoring tool after a time delay.
Type:
Grant
Filed:
July 31, 2018
Date of Patent:
May 31, 2022
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Jose Escudero, Andrew Prisbell, Bhagyashri Walse
Abstract: A method for evaluating drilling fluid includes making an NMR measurement of a sample of the drilling fluid and inverting the measurements to compute a corresponding T1T2 plot. The T1T2 plot is in turn evaluated to characterize the drilling fluid. In one embodiment, a stability index of the fluid may be computed from multiple NMR measurements made while aging the sample.
Type:
Grant
Filed:
August 17, 2020
Date of Patent:
May 24, 2022
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Yiqiao Tang, Reda Karoum, Yi-Qiao Song, Shin Utsuzawa, Stephen Cliffe
Abstract: Embodiments described herein provide a downhole tool (e.g., a retrievable bridge plug) that includes a sealing device and a load retention/equalization mechanism. The sealing device includes an elastomer seal component and an expansion device configured to radially expand outwardly to compress the elastomer seal component against a wellbore casing within which the downhole tool is located. The sealing device further includes lower and upper support barriers configured to radially expand outwardly against the wellbore. The sealing device also includes a seal energizing spring configured to maintain an initial setting force of the elastomer seal component against the wellbore casing.
Abstract: An electromagnetic measurement tool for making multi-frequency, full tensor, complex, electromagnetic measurements includes a triaxial transmitter and a triaxial receiver deployed on a tubular member. An electronic module is configured to obtain electromagnetic measurements at four or more distinct frequencies. The measurement tool may be used for various applications including obtaining a resistivity of sand layers in an alternating shale-sand formation; computing a dielectric permittivity, a conductivity anisotropy, and/or a permittivity anisotropy of a formation sample; and/or identifying formation mineralization including discriminating between pyrite and graphite inclusions and/or computing weight percent graphite and/or pyrite in the formation sample.
Type:
Grant
Filed:
September 4, 2018
Date of Patent:
May 24, 2022
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Dean M. Homan, John Rasmus, Siddharth Misra
Abstract: Compositions herein may include an oleaginous continuous phase, an aqueous discontinuous phase, a first clay comprising an organophilic smectite clay, and a second clay comprising a magnesium silicate clay. Methods herein may include circulating such fluids downhole as well as admixing a magnesium silicate dispersed clay and an organophilic smectite clay in an oleaginous base fluid.
Type:
Grant
Filed:
February 16, 2021
Date of Patent:
May 24, 2022
Assignee:
SCHLUMBERGER TECHNOLOGY CORPORATION
Inventors:
Balakrishnan Panamarathupalayam, Paulo Pauferro, Jr.
Abstract: A method for determining a mineralogical composition of a geological formation sample includes measuring a mineralogical composition of the sample and measuring an elemental composition of the sample. The mineralogical composition is processed to compute a predicted elemental composition of the sample based on known elemental compositions of predetermined minerals. The measured mineralogical composition is corrected to obtain a corrected mineralogical composition which is in turn processed to compute a corresponding corrected predicted elemental composition of the sample. The measured elemental composition is compared with the predicted elemental compositions to obtain error indicators. The error indicators are compared and evaluated to selected and output one of the measured or corrected measured mineralogical compositions.
Abstract: A method and system for determining a property of a substance using nuclear magnetic resonance (NMR) is described herein. The method includes applying a NMR pulse sequence to the substance. The NMR pulse sequence includes a first set of pulses and a second set of pulses. The first set of pulses and the second set of pulses encode for overlapping diffusion times. By overlapping diffusion times, the NMR pulse sequence can be used to measure a diffusion coefficient for a first diffusion time, a diffusion coefficient for a second diffusion time, and a correlation between the two overlapping diffusion times. This information, in turn, can be used to differentiate between intrinsic bulk diffusivity of the substance and the reduced diffusivity of the substance caused by restricted diffusion.
Abstract: Techniques for detecting and correcting for discrepancy events in a fluid pipeline are presented. The techniques can include obtaining a plurality of empirical temperature and pressure measurements at a plurality of locations within the pipeline; simulating, using a pipeline model, a plurality of simulated temperature and pressure measurements for the plurality of locations within the pipeline; detecting, by a discrepancy event detector, at least one discrepancy event representing a discrepancy between the empirical temperature and pressure measurements and the simulated temperature and pressure measurements; outputting to a user an indication that the at least one discrepancy event has been detected; accounting for the at least one discrepancy; determining, after the accounting and using an estimator applied to the pipeline model, a corrected branch flow rate for the pipeline; and outputting the corrected branch flow rate for the pipeline to the user.
Abstract: A method of stimulating a subterranean formation includes acquiring stimulation treatment input data, simulating a transport of at least one material transport present in a stimulation treatment design with a transport simulator model, determining and preparing the treatment design and performing the stimulating treatment according to the selected treatment design. As recited, simulating includes assuming that for each time stage of the stimulation treatment a velocity field for the at least one material transport and a stimulated flow domain geometry are known and calculating at each time stage the distribution of at least one physical quantity of the at least one material transport using a Lagrangian approach.
Type:
Grant
Filed:
December 5, 2017
Date of Patent:
May 24, 2022
Assignee:
Schlumberger Technology Corporation
Inventors:
Vadim Ismailovich Isaev, Dmitry Sergeevich Kuznetsov, Ivan Vladimirovich Velikanov