Patents Assigned to Science & Engineering, Inc.
  • Patent number: 11927551
    Abstract: Systems and methods for determining a mass of a crop by using at least one X-ray scanner is provided. The method includes obtaining at least two scan images of the crop, where a first of the at least two images is obtained along a first plane relative to the crop and a second of the at least two images is obtained along a second plane relative to the crop, and where the first plane is angularly displaced relative to the second plane, registering the first image and the second image, correcting the registered first and second images, and determining the mass of the crop from the corrected first and second images.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: March 12, 2024
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron Couture, Basak Oztan
  • Patent number: 11914930
    Abstract: A method for implementing a modeling tool that generates optimized reduced kinetics models for given operating conditions and a numerical scheme to speed-up kinetics evaluation of turbulent-chemistry coupling during CFD simulations. The tool is capable of predicting ignition and flameholding phenomenon for most propulsion systems, including gas turbine applications. A lumped-parameterization based optimization scheme may generate multi-step quasi-global kinetics models using laminar flame speed as the target data. This scheme may be further extended to include optimization of emission predictions such as CO and NOx.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: February 27, 2024
    Assignee: COMBUSTION SCIENCE & ENGINEERING, INC.
    Inventors: Ponnuthurai Gokulakrishnan, Darin Viehe, Andrew Trettel, Michael S. Klassen
  • Patent number: 11579327
    Abstract: The present specification provides a detector for an X-ray imaging system. The detector includes at least one high resolution layer having high resolution wavelength-shifting optical fibers, each fiber occupying a distinct region of the detector, at least one low resolution layer with low resolution regions, and a single segmented multi-channel photo-multiplier tube for coupling signals obtained from the high resolution fibers and the low resolution regions.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: February 14, 2023
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron J. Couture, Jeffrey M. Denker
  • Patent number: 11551903
    Abstract: An X-ray tube with an anode assembly and specially designed heat transfer element is described. The anode assembly includes an X-ray producing target and a substantially cylindrical electrode that stops or inhibits electrons that may back-scatter from the target. At least one heat transfer element is positioned proximate the anode assembly and in the region between a conducting enclosure and a non-conducting hollow housing or tube. The heat transfer element is positioned to thermally couple the hot anode assembly to an air-cooled conducting enclosure while maintaining an electric isolation.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: January 10, 2023
    Assignee: American Science and Engineering, Inc.
    Inventor: Martin Rommel
  • Patent number: 11536672
    Abstract: Systems and methods for determining a mass of a crop by using at least one X-ray scanner is provided. The method includes obtaining at least two scan images of the crop, where a first of the at least two images is obtained along a first plane relative to the crop and a second of the at least two images is obtained along a second plane relative to the crop, and where the first plane is angularly displaced relative to the second plane, registering the first image and the second image, correcting the registered first and second images, and determining the mass of the crop from the corrected first and second images.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: December 27, 2022
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron Couture, Basak Oztan
  • Patent number: 11525930
    Abstract: The present specification describes an X-ray detector that includes at least one scintillator screen for absorbing incident X rays and emitting corresponding light rays, a wavelength shifting sheet (WSS) coupled with the at least one scintillator screen for shifting the emitted light rays, at least one wavelength shifting fiber (WSF) coupled with at least one edge of the WSS for collecting the shifted light rays, and a photodetector for detecting the collected light rays.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: December 13, 2022
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron J. Couture, Jeffrey M. Denker
  • Patent number: 11340361
    Abstract: The present specification describes a system for synchronizing a transmission detector and a backscatter detector integrated with a portable X-ray scanner. The system includes a transmitter connected with the transmission detector for transmitting the analog detector signal and a receiver connected with the scanner for receiving the transmitted analog detected signal where the transmitter and the receiver operate in the ultra-high frequency range.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: May 24, 2022
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron Judy Couture, Riley Phelps, Jeffrey M. Denker
  • Patent number: 11266006
    Abstract: Embodiments of the disclosed system and method provide for generating a multiple-energy X-ray pulse. A beam of electrons is generated with an electron gun and modulated prior to injection into an accelerating structure to achieve at least a first and second specified beam current amplitude over the course of respective beam current temporal profiles. A radio frequency field is applied to the accelerating structure with a specified RF field amplitude and a specified RF temporal profile. The first and second specified beam current amplitudes are injected serially, each after a specified delay, in such a manner as to achieve at least two distinct energies of electrons accelerated within the accelerating structure during a course of a single RF-pulse. The beam of electrons is accelerated by the radio frequency field within the accelerating structure to produce accelerated electrons which impinge upon a target for generating Bremsstrahlung X-rays.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: March 1, 2022
    Assignee: American Science and Engineering, Inc.
    Inventor: Aleksandr Saverskiy
  • Patent number: 11193898
    Abstract: An X-ray inspection system for scanning objects and providing corresponding contrast controlled scan images is provided. The system includes an X-ray source configured to generate an X-ray beam for irradiating the object where the X-ray source is coupled with at least a first beam filter having a first thickness and a second beam filter having a second thickness greater than the first thickness, a detector array, a processing unit, a user interface configured to receive a user input indicative of a desired level of contrast in an image, and a controller configured to adjust a position of at least one of the first or second beam filters based on the user input indicative of the desired level of contrast in the at least one image.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: December 7, 2021
    Assignee: American Science and Engineering, Inc.
    Inventor: Jeffrey R. Schubert
  • Patent number: 11175245
    Abstract: This specification describes an X-ray scanning system that adaptively generates a scatter signal, in the course of a single scan, based on the detected brightness areas of a scanned object. An X-ray source is configured to emit an X-ray beam towards an area over a target object. At least one detector detects radiation scattered from the target object and generates a corresponding scatter radiation signal. The scatter radiation signal is characterized, at least in part, by one or more brightness levels corresponding to one or more scanned areas of the target object. A feedback controller receives the scatter radiation signal from the detector, generates a signal that is a function of the one or more brightness levels and that is based on the received scatter radiation signal, and transmits the signal to the X-ray source. In response, the X-ray source is configured to receive the signal and adjust the X-ray beam intensity based on the signal.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: November 16, 2021
    Assignee: American Science and Engineering, Inc.
    Inventor: Martin Rommel
  • Patent number: 10955367
    Abstract: Methods for characterizing living plants, wherein one or more beams of penetrating radiation such as x-rays are scanned across the plant under field conditions. Compton scatter is detected from the living plant and processed to derive characteristics of the living plant such as water content, root structure, branch structure, xylem size, fruit size, fruit shape, fruit aggregate volume, cluster size and shape, fruit maturity and an image of a part of the plant. Ground water content is measured using the same technique. Compton backscatter is used to guide a robotic gripper to grasp a portion of the plant such as for harvesting a fruit.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: March 23, 2021
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron Couture, Calvin Adams, Rafael Fonseca, Jeffrey Schubert, Richard Mastronardi
  • Patent number: 10830911
    Abstract: The present specification describes an X-ray detector that includes at least one scintillator screen for absorbing incident X rays and emitting corresponding light rays, a wavelength shifting sheet (WSS) coupled with the at least one scintillator screen for shifting the emitted light rays, at least one wavelength shifting fiber (WSF) coupled with at least one edge of the WSS for collecting the shifted light rays, and a photodetector for detecting the collected light rays.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: November 10, 2020
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron J. Couture, Jeffrey M. Denker
  • Patent number: 10720300
    Abstract: A two-dimensional X-ray scanner that includes a beam steerer for steering an electron beam to impinge upon a target; and a collimator further including an aperture adapted for travel in an aperture travel path for rotating the X-ray beam plane spanned by the electron beam impinging upon the target along a focal track for emitting a scanning X-ray beam.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: July 21, 2020
    Assignee: American Science and Engineering, Inc.
    Inventors: Martin Rommel, Jeffrey R. Schubert
  • Patent number: 10712293
    Abstract: Methods for characterizing living plants, wherein one or more beams of penetrating radiation such as x-rays are scanned across the plant under field conditions. Compton scatter is detected from the living plant and processed to derive characteristics of the living plant such as water content, root structure, branch structure, xylem size, fruit size, fruit shape, fruit aggregate volume, cluster size and shape, fruit maturity and an image of a part of the plant. Ground water content is measured using the same technique. Compton backscatter is used to guide a robotic gripper to grasp a portion of the plant such as for harvesting a fruit.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: July 14, 2020
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron Couture, Calvin Adams, Rafael Fonseca, Jeffrey Schubert, Richard Mastronardi
  • Patent number: 10670740
    Abstract: The present specification provides a detector for an X-ray imaging system. The detector includes at least one high resolution layer having high resolution wavelength-shifting optical fibers, each fiber occupying a distinct region of the detector, at least one low resolution layer with low resolution regions, and a single segmented multi-channel photo-multiplier tube for coupling signals obtained from the high resolution fibers and the low resolution regions.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: June 2, 2020
    Assignee: American Science and Engineering, Inc.
    Inventors: Aaron J. Couture, Jeffrey M. Denker
  • Patent number: 10656304
    Abstract: Methods and an x-ray source for sweeping an x-ray beam across an object of inspection. A beam of electrons is emitted by a cathode, while a sweep controller applies a signal to a beam controller in a prescribed path on an anode, thereby causing an x-ray beam to be emitted from an aperture disposed at one apex of a snout of variable length. The aperture may be a Rommel aperture that allows for forming a scanning x-ray of desired size and flux independently of the angle at which the beam is emitted. Scanning rate may be varied during the course of a scan. Multiple x-ray beams may be formed simultaneously, where one beam is inside a conveyance while the other is outside the conveyance, for example.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: May 19, 2020
    Assignee: American Science and Engineering, Inc.
    Inventors: Lee Grodzins, Dan-Cristian Dinca, Martin Rommel
  • Patent number: 10591629
    Abstract: A conveyance and methods for x-ray inspection of an object. The conveyance has a bed with attached wheels and detector elements disposed along a pontine structure coupled to the conveyance. A source of penetrating radiation is coupled to the conveyance and disposed so as to irradiate each of the detector elements from a single position. An automated manual transmission couples power from an engine to a set of the wheels of the conveyance, both for road travel and for x-ray inspection.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: March 17, 2020
    Assignee: American Science and Engineering, Inc.
    Inventor: Jason Toppan
  • Patent number: 10535491
    Abstract: Methods for maintaining a specified beam profile of an x-ray beam extracted from an x-ray target over a large range of extraction angles relative to the target. A beam of electrons is generated and directed toward a target at an angle of incidence with respect to the target, with the beam of electrons forming a focal spot corresponding to the cross-section of the electron beam. At least one of a size, shape, and orientation of the electron beam cross-section is dynamically varied as the extraction angle is varied, and the extracted x-ray beam is collimated. Dynamically varying the size, shape or orientation of the electron beam cross-section may be performed using focusing and stigmator coils.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 14, 2020
    Assignee: American Science and Engineering, Inc.
    Inventors: Martin Rommel, Louis P. Wainwright
  • Patent number: 10368428
    Abstract: Methods for generating a multiple-energy X-ray pulse. A beam of electrons is generated with an electron gun and modulated prior to injection into an accelerating structure to achieve at least a first and specified beam current amplitude over the course of respective beam current temporal profiles. A radio frequency field is applied to the accelerating structure with a specified RF field amplitude and a specified RF temporal profile. The first and second specified beam current amplitudes are injected serially, each after a specified delay, in such a manner as to achieve at least two distinct endpoint energies of electrons accelerated within the accelerating structure during a course of a single RF-pulse. The beam of electrons is accelerated by the radio frequency field within the accelerating structure to produce accelerated electrons which impinge upon a target for generating Bremsstrahlung X-rays.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: July 30, 2019
    Assignee: American Science and Engineering, Inc.
    Inventor: Aleksandr Saverskiy
  • Patent number: 10327891
    Abstract: An intra-annular mounting frame for an aortic valve having native aortic cusps is provided which includes a frame body with native leaflet reorienting curvatures and interconnecting points; the curvatures shaped to be received inside the valve below the native aortic cusps and to reorient the native aortic cusps within the aortic valve, where each of the curvatures extends concavely upward from a reference latitudinal plane tangential to each curvature's base.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: June 25, 2019
    Assignee: BIOSTABLE SCIENCE & ENGINEERING, INC.
    Inventor: J. Scott Rankin