Abstract: A method and system are provided for high-precision separation of pharmaceutical or biotechnology liquids. The separation can be in accordance with direct flow filtration, tangential flow filtration or preparative chromatography. Movement of the pharmaceutical or biotechnology liquid within a flow path is controlled according to a selected pattern. Selected patterns include automatically and progressively increasing the flow rate within the unit, automatically and progressively increasing the pressure within the unit or initially proceeding according to a relatively high constant flow rate and switching to a relatively high constant pressure at a time when a given parameter is attained.
Abstract: A method and system are provided for high-precision separation of pharmaceutical or biotechnology liquids. The separation can be in accordance with direct flow filtration, tangential flow filtration or preparative chromatography. Movement of the pharmaceutical or biotechnology liquid within a flow path is controlled according to a selected pattern. Selected patterns include automatically and progressively increasing the flow rate within the unit, automatically and progressively increasing the pressure within the unit or initially proceeding according to a relatively high constant flow rate and switching to a relatively high constant pressure at a time when a given parameter is attained.
Abstract: Presteralized manifolds are provided which are designed for sterile packaging and single-use approaches. Disposable tubing and flexible-wall containers are assembled via aseptic connectors. These manifolds interact with at least one remotely controlled pinch valve which engages only the outside surface of the manifold tubing. Such manifold and pinch valve systems can be used in conjunction with a peristaltic type of pump, which, together with the remotely operated pinch valve, can be operated by a controller which provides automated and accurate delivery of biotechnology fluid in an aseptic environment while avoiding or reducing cleaning and quality assurance procedures.
Abstract: A system is provided for proceeding with filtration of liquids in a manner having enhanced control characteristics. Yields are enhanced. The system and method can be used to maintain a substantially constant trans-membrane pressure. When desired, that constant trans-membrane pressure is especially well-suited to yield enhancement for the particular liquid being filtered, concentrated or collected, while minimizing a risk of damage to or loss of valuable components. Additionally, a constant feed rate or pump output can be maintained.
Abstract: A system is provided for proceeding with filtration of liquids in a manner having enhanced control characteristics. Yields are enhanced. The system and method can be used to maintain a substantially constant trans-membrane pressure. When desired, that constant trans-membrane pressure is especially well-suited to yield enhancement for the particular liquid being filtered, concentrated or collected, while minimizing a risk of damage to or loss of valuable components. Additionally, a constant feed rate or pump output can be maintained. Approaches also are described for determining optimal filtration conditions, including trans-membrane pressure and feed rate. Also described is a system and method for determining pressures in a pulsating system with enhanced accuracy by using a peak pressure mode.
Abstract: A system is provided for proceeding with automated filtration of liquids in a manner which allows for quantitative collection of desired filtrates or permeates. The system, as well as its associated method, monitors various parameters which are fed to a processor-controlled pump unit. This pump unit has several alternative modes of operation, including controlling the rate of flow through the pump unit. Data are received from one or more pressure sensors and preferably also from a scale. The processor-controlled pump unit operates on these data to control flow velocity and/or filter back pressure within the system.
Abstract: A peristaltic pump having a first and second shoe mechanism being slidably mounted on a pump body is provided to allow the placement of two flexible tubes therein. The pump preferably includes tube holding mechanisms to prevent the flexible tube from moving while engaged by the pump. The pump exhibits dual feed capabilities that allow the simultaneous pumping of two distinct fluids at a measured and precise flow rate.