Abstract: Chemically cross-linked polymeric particles are formed using mechanical rather than chemical processes, facilitating production of small-diameter particles in a manner largely independent of the viscosity or density of the polymer. For example, an uncross-linked resin may be provided in particulate form, agglomerated, and compressed into a mass of a desired shape with a desired diameter, and subsequently cross-linked.
Abstract: A composite medical device includes a knitted structure having a single layer of yarns to define a single layered wall, where the yarns are interlaced into stitches in a knit pattern capable of resilient longitudinal elongation and resilient radial contraction of the knit from a quiescent state to an elongated state, and a layer of ePTFE securably attached to the knitted structure. The knit pattern is a warp knitted pattern of yarns forming a textile layer having an interior surface and an exterior surface, where interior yarns form the interior surface and form loops in the longitudinal direction of said knitted structure, and exterior yarns form the exterior surface and are diagonally shifted over two or more of the interior yarns in an alternating pattern along a width of the knitted structure before engaging an the interior yarn.
Abstract: A stent comprises a first section and a second section and at least one securement member. The at least one securement member is disposed about at least one region of the first section and at least one region of the second section. The at least one securement member has a crimped diameter that is less than its uncrimped diameter. When the at least one securement member is in the crimped diameter at least a portion of an inner surface of the at least one securement member is fixedly engaged to the at least one region of the first section and the at least one region of the second section. In the crimped diameter the at least one region of the first section and the at least one region of the second section are immediately adjacent one another.
Abstract: An improved method of tracking a catheter's position within a human body does not rely on x-rays, but instead calculates the position of the catheter's imaging head by analyzing image data. Such an analysis is able to determine the position of the imaging head in 3 dimensional space, relative to an arbitrarily selected reference image. An image is compared with the reference image, correlation data between corresponding points on the two images are gathered, and a correlation loss rate in a particular direction is determined. This correlation loss rate is modeled to an exponential function, which is evaluated to estimate an angle of separation between the image and the reference image. One or more angles of separation are used to determine a position in three dimensional space of the image, relative to the reference image. By repeating this process for a series of images being gathered by a catheter, the position of the catheter can be determined.
Abstract: A stent is provided having attachment members for allowing attachment of a sheath or sheaths. Accordingly, a practitioner is able to selectively choose a desirable sheath, such as a polymeric sleeve, a biomaterial, or a natural blood vessel, at a point-of-use and attach it to the sheath. The attachment members may be bendable tabs and/or secondary support stents.
Abstract: A single transducer element that is capable of oscillation at a plurality of natural resonant frequencies may be used in an ultrasonic imaging catheter assembly including a catheter body configured to be inserted and guided through the vascular system of a living being, a lumen and a rotatable imaging core adapted to pass through the lumen, the imaging core including a flexible drive-shaft. Because the transducer element is capable of oscillation at a plurality of natural resonant frequencies, a user can switch from one frequency to another in order to improve the depth of field or resolution without having to switch out the catheter or imaging core.
Abstract: The present invention relates to a biocompatible, three-dimensional scaffold useful to grow cells and to regenerate or repair tissue in predetermined orientations. The scaffold is particularly useful for regeneration and repair of cardiac tissue. The scaffold contains layers of alternating A-strips and S-strips, wherein the A-strips within each layer are aligned parallel to each other and preferentially promote cellular attachment over attachment to the S-strips. Methods of producing and implanting the scaffold are also provided.
Abstract: A stent delivery system includes a catheter shaft defining two lumens, for respectively receiving a guidewire and a fiber optic cable having a viewing capability. Specifically, the fiber optic cable has a first (e.g., proximal) end and a second (e.g., distal) end, and is adapted for transmitting illumination light from its first end to its second end while transmitting an image from its second end to its first end. The system further includes a stent positioned over the catheter shaft, and may also include means for deploying the stent. The stent may be of a self-expanding type or of an inflation type. The fiber optic cable is used to visually inspect proper deployment of the stent before, during, and after the stent deployment.
Abstract: A stent delivery system comprises a catheter which includes a catheter shaft and a balloon positioned thereon. A rotatable sheath is rotatably disposed about a portion of the catheter. The rotatable sheath has a distal portion which extends over the balloon and a proximal portion which extends over the catheter shaft proximal to the balloon. A stent prior to delivery is disposed about the distal portion. The rotatable sheath may also and/or alternatively be constructed of a non-compliant material where as the balloon is a compliant material.
Type:
Application
Filed:
January 23, 2008
Publication date:
May 22, 2008
Applicant:
Scimed Life Systems, Inc.
Inventors:
Thomas Tran, Tracee Eidenschink, Jan Weber
Abstract: A medical system includes a catheter having an elongated tubular member and an inner core slideably received within the elongated member. The inner core includes an imager on a distal end and is coupled with a control system and an imaging system. The inner core is configured to scan the interior of a lumen by radially rotating around a center axis and axially translating along the center axis while within the elongated member. The medical system is configured to dynamically image a body lumen at a high speed in order to allow for optical imaging in a safe manner without long durations of blood sequestration and displacement. The medical system is configured to obtain three dimensional images of the body lumen with as little as one dimensional scanning of the lumen. Images of the lumen can be stored and viewed at a desired rate after scanning.
Abstract: A method for treating fecal incontinence in a body of a mammal having a rectum formed by a rectal wall extending to an anus wherein the rectal wall includes a sphincter muscle surrounding the anus. At least one nonaqueous solution is introduced into the rectal wall in the vicinity of the anus. A nonbiodegradable solid is formed in the rectal wall from the at least one nonaqueous solution.
Abstract: The present invention relates to methods and devices for performing endoscopic cannulation, papillotomy and sphincterotomy and similar procedures. According to the present state of the art, endoscopic cannulation of the common bile duct and papillotomy and similar procedures are accomplished by advancing the device into an endoscope/duodenoscope so that the distal tip of the device exits the endoscope adjacent the sphincter muscles at the Papilla of Vater. The endoscope mechanisms are then manipulated to orient the distal tip of the device to the desired position for proper cannulation of the duct. Due to inconsistencies in, for example, the sphincterotome, anatomy, and endoscope manipulation, it is difficult to accurately and consistently position the sphincterotome for proper cannulation.
Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
Type:
Application
Filed:
May 7, 2007
Publication date:
May 8, 2008
Applicant:
SCIMED LIFE SYSTEMS, INC.
Inventors:
Roger N. Hastings, Anupama Sadasiva, Michael J. Pikus, Graig Kveen
Abstract: A medical device comprises a balloon catheter shaft having a catheter balloon. An outer balloon or sheath is disposed about the catheter balloon and is freely rotatable about the catheter balloon.
Abstract: A method for treating morbid obesity in a body of a mammal having a gastrointestinal tract extending through a stomach and a pyloric sphincter and a wall forming the stomach and pyloric sphincter. At least one implant is formed in the wall in the vicinity of the pyloric sphincter to inhibit emptying of the stomach.
Abstract: A method for providing dilation resistance to an implantable tubular graft includes the steps of (a) providing a graft having opposed open ends and a textile wall extending in a lengthwise direction therebetween defining a graft diameter, wherein the textile wall has radially extending yarns having a radial extent which inter-engage longitudinally extending yarns having a longitudinal extent to define a textile pattern and further wherein the radially extending yarns are obliquely oriented to the lengthwise direction of the graft, thereby defining a first acute angle from the lengthwise direction of the graft; (b) providing an elongate tubular mandrel having a diameter which differs from the graft diameter by a factor of at least 1.
Type:
Grant
Filed:
September 10, 2004
Date of Patent:
April 29, 2008
Assignee:
Scimed Life Systems, Inc.
Inventors:
Jerry Q. Dong, John Spiridigloizzi, Ronald Rakos, Krzysztof Sowinski, William Quinn
Abstract: The invention provides a surgical sling assembly for implanting in tissue to provide anatomical support in a patient. The surgical sling assembly includes a sling and a biocompatible casing enclosing at least a portion of the sling. The biocompatible casing is absorbed by the patient's tissues after the surgical sling assembly is positioned within the patient's tissue to provide anatomical support.