Abstract: A method includes forming an elongated member having a tubular shape. The elongated member includes a sidewall that defines a lumen. A spiral-shaped opening is formed in the sidewall such that the elongated member is configured to move between a retracted configuration and an expanded configuration along a longitudinal axis of the lumen. In some embodiments, the method further includes forming a distal retention structure. The distal retention structure can be disposed at a distal end of the elongated member and can define a lumen in fluid communication with the lumen defined by the sidewall of the elongated member.
Abstract: Occluded vasculature such as occluded arterial vasculature can be recanalized using a device that is configured to penetrate an occlusion, while limiting a distance that said penetration structure can extend in order to limit inadvertent vascular damage. The device can include an elongate sheath and a stylet disposed within the elongate sheath. The elongate sheath and the stylet can include, in combination, an engagement section that is configured to limit relative axial movement between the elongate sheath and the stylet.
Type:
Grant
Filed:
June 24, 2004
Date of Patent:
August 14, 2012
Assignee:
Boston Scientific Scimed, Inc.
Inventors:
Mark L. Jenson, William J. Drasler, Daniel M. Lafontaine
Abstract: A multifilar flexible rotary shaft includes a plurality of individual filaments which are not wound around each other or around a central core, a loose ensemble of filaments. The input ends of each filament are coupled to each other and the output ends of each filament are coupled to each other. A loose ensemble of N filaments can transmit N times the torque of a single filament, and will have N times the torsional stiffness of a single filament, while retaining the minimum radius of operation of a single filament. Since a loose ensemble of filaments does not have any appreciable contact forces among the filaments (because they are not forcibly twisted together), there is no appreciable internal friction or hysteresis. The filaments should be no more than loosely twisted together, if at all. Several practical applications of the invention are also disclosed.
Abstract: According to an aspect of the present invention, the present invention provides medical devices which contain one or more polymeric regions that are at least partially biodisintegrable in bodily fluid. These devices may be implanted or inserted into a subject for treatment of various diseases, disorders and conditions.
Abstract: Medical device packaging, medical device packaging assemblies, and methods for preparing and packaging medical devices. An example medical device packaging assembly may include a pouch having a pocket formed therein. A carrier tube may be disposed in the pocket. The carrier tube may have a plurality of apertures formed therein. A medical device may be disposed within the carrier tube.
Abstract: The present invention provides a catheter and catheter assembly for delivering micronized therapeutic agents to a target site in the body and, in particular, to a target site in the heart. The micronized therapeutic agents are delivered in aerosol form or dry powder form. The present invention also provides a method of delivering micronized therapeutic agents to a target site in the body by placing the therapeutic agents in a catheter, positioning the catheter in the target site, and exposing the therapeutic agents to an energizing mechanism sufficient to create supersonic flow to carry the therapeutic agents from a stationary state in the catheter to a mobile state towards the target site.
Type:
Grant
Filed:
February 7, 2011
Date of Patent:
August 7, 2012
Assignee:
Boston Scientific Scimed, Inc.
Inventors:
Maria Palasis, Wendy Naimark, Toby Freyman, Samuel Epstein
Abstract: The present invention relates to an endoscopic visioning system and related method for both forward and backward viewing of a body lumen. According to an embodiment, the system includes an endoscope, a vision head including a light source and a vision chip on both a proximal and a distal side of the vision head, and an extension arm for moving the vision head away from and back toward the endoscope. Alternatively, the light source and vision chip may be contained in a distal end of the endoscope. In such an alternative embodiment, the vision head is a parabolic mirror mounted on the extension arm for reflecting images, for example, from behind the distal end of the endoscope to the vision chip in the distal end of the endoscope to permit, for example, a retrograde view of the surgical site entrance.
Abstract: An apparatus includes a carrier configured to be movably disposed within a channel defined by an elongate member. The carrier includes a proximal end portion and a distal end portion. The proximal end portion is configured to be coupled to an actuator. The distal end portion includes a protrusion and an engagement surface. The protrusion has a tip configured to bodily pierce tissue. The protrusion is configured to be received within a lumen defined by a connecting portion of an implant, such as, for example, a pelvic floor implant, such that the tip extends through the lumen defined by the connecting portion of the implant. The engagement surface is configured to engage a portion of the connecting portion of the implant to limit movement of the connecting portion of the implant relative to the protrusion.
Abstract: Devices and methods for cold-treating lesions within the body. A temperature monitoring device for use with a cryo therapy apparatus may include a cryo therapy apparatus, one or more tubular members coupled to the cryo therapy apparatus, and a temperature monitoring member coupled to the tubular member. The temperature monitoring member may comprise a retractable needle, an infrared sensor, an ultrasound transmitter, or a stent having a plurality of spikes.
Abstract: An endoprosthesis can include a body including an underlying portion and a surface portion overlying the underlying portion. The underlying portion can include a bioerodible metal in the form of a matrix and corrosion enhancing deposits within the matrix. The surface portion including the bioerodible metal of the matrix. The surface portion having a first erosion rate when exposed to a physiological environment and the underlying portion having a second erosion rate when exposed to a physiological environment that is greater than the first erosion rate.
Abstract: Described herein are various methods and devices for delivering cryoablative therapy. One such device includes a cryoablation chamber and a volume displacement chamber. In use, the volume displacement chamber can be expanded to occupy a non-therapeutic volume.
Abstract: A stent comprises at least one curve deployment section. The at least one curve deployment section comprises at least one expansion ring having a circumferential length, a longitudinal length and comprising a first circumferential section and a second circumferential section. The first circumferential section comprises an expansion column and the second circumferential section comprises at least two expansion columns longitudinally offset from one another. The expansion column of the first circumferential section is engaged to the at least two expansion columns of the second circumferential section.
Abstract: A low profile emboli capture device is provided for use in angioplasty and other intravascular procedures. A standard guidewire is utilized having a reduced cross-sectional area formed near its distal end. A filter and self-expanding stent are packaged on the reduced cross-sectional area of the guidewire. A movable sleeve extends over the guidewire and holds the self-expanding stent and filter in their retracted positions while the device is being positioned in the artery. The sheath is moved relative to the self-expanding stent and filter, whereupon the self-expanding stent and filter become deployed.
Type:
Grant
Filed:
October 28, 2004
Date of Patent:
August 7, 2012
Assignee:
Boston Scientific Scimed, Inc.
Inventors:
Ulf Harry Stanford, Yem Chin, John A Griego, Sheng-Ping Zhong
Abstract: Devices and methods for transferring forces down a catheter shaft while also maintaining an open fluid pathway are disclosed. In some of the designs, inner and outer members of the catheter interact, allowing improved transfer of forces down the catheter shaft. These designs also allow for maintenance of a fluid pathway along the length of the shaft, including at locations where the inner and outer members are interacting with one another. Structures are disclosed which extend at least a portion of the length of the shaft, allowing improved force transfer and resistance to kinking. Structures are also disclosed which specifically allow for inner and outer members to engage one another at at least one point along the shaft, improving the transfer of forces down the shaft.
Type:
Grant
Filed:
March 6, 2006
Date of Patent:
August 7, 2012
Assignee:
Boston Scientific Scimed, Inc.
Inventors:
Daniel Gregorich, Soo-Young Yoon, Liza J. Davis, Tracee E. J. Eidenschink
Abstract: Embodiments of the invention include a medical instrument with a sealing device. In embodiments, the medical instrument is an endoscopic device having a seal between an elongate shaft member and/or on a portion of a handle to, for example, prevent flow communication between a lumen of the elongate member and the external environment.
Type:
Grant
Filed:
April 26, 2004
Date of Patent:
July 31, 2012
Assignee:
Boston Scientific Scimed, Inc.
Inventors:
David I. Freed, Malka S. Berndt, Michael J. Magill, Otto E. Anderhub, Osiris A. Nunez, Boris Kesler, Gerardo S. Martin, Christopher D. Endara, James M. Zardeskas, Oscar Carrillo, Satish Sharma
Abstract: The present invention relates generally to a catheter having a torque transmitting shaft which retains adequate flexibility. The catheter includes an elongate shaft having an outer surface. In a preferred embodiment, a raised pattern is disposed on the outer surface. Preferably, the raised pattern improves the transmission of torque along the elongate shaft by including a series of bearing points which contact other bearing points along the shaft when torqued.
Abstract: A guided filter system for temporary placement of a filter in an artery or vein is disclosed. The system includes a guidewire slideable through a wire guide included in a distal region of a support wire. The support wire has an expandable filter, which is operable between a collapsed or enlarged condition. A variety of endovascular devices, including angioplasty, atherectomy, and stent-deployment catheters, are insertable over the guidewire and/or the support wire. Methods of using the guided filter system to direct and exchange endovascular devices to a region of interest, and to entrap and remove embolic material from the vessel are also disclosed.
Abstract: A medical implant includes iridium oxide. The iridium oxide has a plurality of Ir—O ? bonds and a plurality of Ir?O ? bonds. The iridium oxide has a ratio of the Ir—O ? bonds to the Ir?O ? bonds that is greater than 1.3.
Type:
Grant
Filed:
December 3, 2009
Date of Patent:
July 31, 2012
Assignee:
Boston Scientific Scimed, Inc.
Inventors:
Liliana Atanasoska, Pankaj Gupta, Charles Deng
Abstract: A tether guided bifurcated stent having a generally tubular main body extending along a longitudinal axis connected to a side branch assembly. Both the main stent body and the side branch assembly are capable of forming an unexpanded configuration and an expanded configuration. The bifurcation's expansion is facilitated by a force exerted by the tether. When the side branch assembly is expanded it forms a secondary tubular region defining a generally tubular shape extending at an angle to the longitudinal axis of the main tubular body.
Abstract: An elongate medical device including an inner elongate member, a reinforcing member, and an outer tubular member is described. The reinforcing member may be a helically wound continuous wire including a first portion having a first cross-sectional profile, a second portion having a second cross-sectional profile, and a transition region located between the first portion and the second portion. The first cross-sectional profile may be different from the second cross-sectional profile. In some embodiments, the first cross-sectional profile may be circular or non-circular and the second cross-sectional profile may be circular or non-circular.
Type:
Grant
Filed:
December 13, 2010
Date of Patent:
July 31, 2012
Assignee:
Boston Scientific Scimed, Inc.
Inventors:
Stephen Griffin, Elaine Lim, Huey Quoc Chan