Abstract: The present invention discloses high solids slurries of sulfate process, anatase titanium dioxide pigment. The improvements of these slurries over those of the prior art are improved slurry stability, tolerance to calcium and magnesium ions, foaming tendencies and reduced tendency to flocculate. The slurries of the present invention are comprised of at least 65% by weight of anatase TiO.sub.
Abstract: The present invention provides a process for the production of hydrophobic inorganic oxide products which comprises reacting the inorganic oxide particles with organohalosilanes, preferably organochlorosilanes, to produce hydrophobic organosilane coated inorganic oxides. It is preferred that the organohalosilane compounds be reacted with the inorganic oxide particles in an aqueous slurry. The inorganic oxide pigments prepared by the processes of this invention have essentially quantitative retention of the organosilanes and contain no adsorbed aldehydes on their surface. The by-products produced in the preferred embodiments of the invention are innocuous salts, which are environmentally safe and readily disposable.
Type:
Grant
Filed:
December 1, 1995
Date of Patent:
August 5, 1997
Assignee:
SCM Chemicals, Inc.
Inventors:
Leon Weber, Robert J. Kostelnik, Charles Wheddon
Abstract: The subject invention is a new type of silica gel and process for producing the same. The silica gel is the product of gelling alkali metal silicate with excess acid in aqueous medium containing a minute amount a polymerization modifier. The modifier and salts from the resulting gel are then leached with water before substantial drying effects have ensued. Spray-dried gel particles do not require the additional steps of aging or ammonia treating to achieve the desired result of high surface area and high pore volume. The gel can be produced to have various useful and unusual characteristics including the combination of high surface area, high pore volume, and a large average pore diameter.
Abstract: There is provided a process for the partial oxidation of solid ferrous chloride and the complete oxidation of all carbon that is present with molecular oxygen at 350.degree. C. to 675.degree. C., to produce ferric oxide and ferric chloride vapor without producing elemental chlorine.
Abstract: An improved dilute phase chlorination procedure characterized by providing extremely finely divided oxygen-containing metallic material and a carbonaceous material co-milled together to a particle size size of less than 20 microns. The finely divided charge material is introduced into a tubular reaction zone, preferably at the bottom, with the gaseous chlorination agent where reaction occurs at a temperature above 800.degree. C. for a period of time sufficient to fully react the chlorinating agent in a single pass. Metal chloride is recovered from the tubular reactor and, most advantageously, there is little or no need to separate any dusty unreacted solid material from the off-gases for recycle to the chlorination zone.
Abstract: A process for recovering elemental chlorine from ferrous chloride produced during chlorination of a titaniferous ore or ore beneficiate by oxidizing ferrous chloride in a fluidized bed of particulate material which is inert, e.g., sand, continuously oxidizing first to ferric chloride and then to ferric oxide as one stage.