Patents Assigned to SEABED GEOSOLUTIONS B.V.
  • Patent number: 11634198
    Abstract: Embodiments, including systems and methods, for remotely controlling underwater vehicles (such as ROVs) and deploying ocean bottom seismic nodes from the underwater vehicles. A direct data connection may be created between an Integrated Navigation System (located on a surface vessel) and a ROV controller/Dynamic Positioning (DP) system (which may be located on the surface vessel and/or the ROV). The INS may be configured to output the ROV target position and ROV position (such as standard 2 or 3 dimensional coordinates) to the DP system. The DP system may be configured to calculate the necessary ROV movements based on directly received data from the INS. Based on a selected ROV target destination or desired ROV action (which may be done automatically or by an operator), the ROV may be automatically positioned and/or controlled based on commands from the DP system based on commands and/or data from the INS.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: April 25, 2023
    Assignee: Seabed Geosolutions B.V.
    Inventors: Martin John Hartland, Michael Meech
  • Patent number: 11525932
    Abstract: Apparatuses, systems, and methods for data and/or power transfer to and from an ocean bottom seismic node are described. In an embodiment, an autonomous seismic node is configured with a bulkhead connector assembly that may be coupled to a plug assembly for data and/or power transfer and a pressure cap assembly when utilized subsea. A plurality of pins may be located on the bulkhead assembly in a substantially flat contact surface to obtain an external electrical connection to the node. The pins on the bulkhead assembly may form a flat circuit with an external device, such as a plug assembly or pressure cap assembly. One or more external devices may be coupled to the pressure cap assembly and/or bulkhead connector for increased functionality to the node. A quick release assembly and/or locking ring may be utilized to fasten any external device to the bulkhead connector assembly.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: December 13, 2022
    Assignee: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman
  • Patent number: 11442191
    Abstract: Embodiments, including systems and methods, for deploying ocean bottom seismic nodes. Two or more underwater vehicles (such as remotely operated vehicles (ROVs)) may be deployed by a surface vessel and each connected to the surface vessel by a ROV deployment line. A catenary shape of each ROV deployment line may be modeled for more accurate and efficient subsea ROV operations. Real-time modeling and predictive modeling of the catenary shape of the deployed lines may be performed, and the surface vessel and/or ROVs may be positioned based on the modeled catenary shapes. The ROVs may be automatically positioned and/or controlled based on commands from a dynamic positioning (DP) system. An integrated navigation system (INS) may be located on the surface vessel and directly coupled to the one or more DP systems. The surface vessel may travel backwards during deployment operations and deploy one or more subsea baskets astern from the ROVs.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: September 13, 2022
    Assignee: Seabed Geosolutions B.V.
    Inventor: Martin John Hartland
  • Patent number: 11267546
    Abstract: Seismic autonomous underwater vehicles (AUVs) for recording seismic signals on the seabed. The AUV may be negatively buoyant and comprise an external body (which may be formed of multiple housings) that substantially encloses a plurality of pressure housings. Portions of the external body housing may be acoustically transparent and house one or more acoustic devices for the AUV. The AUV may comprise a main pressure housing that holds substantially all of the electronic components of the AUV, while a second and third pressure housing may be located on either side of the main pressure housing for other electronic components (such as batteries). A plurality of external devices (such as acoustic devices or thrusters) may be coupled to the main pressure housing by external electrical conduit. The AUV may comprise fixed or retractable wings for increased gliding capabilities during subsea travel.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: March 8, 2022
    Assignee: Seabed Geosolutions B.V.
    Inventors: Erwan Francois Marie Postic, Thierry Brizard
  • Patent number: 11255998
    Abstract: Disclosed is an ocean bottom seismic node for recording seismic signals on the seabed. The ocean bottom seismic node may comprise an arched cathedral buoyant body coupled to a substantially flat bottom metal plate. The buoyant body may be formed of hard plastic (such as plastic injection in a mold) and have one or more cathedral type inner structures with columns that form a plurality of interconnected inner chambers, which may be dry or filled with foam and/or act as ballasts. One or more electronic components may be directly attached to the bottom metal plate (and within one or more of the internal cathedral chambers) and covered/protected by the buoyant body that is water and pressure resistant at seabed depths. The edge(s) of the buoyant body may seal around the metal plate on one or more peripheral edges of the plate and buoyant body.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 22, 2022
    Assignee: Seabed Geosolutions B.V.
    Inventors: Erwan Francois Marie Postic, Thierry Brizard
  • Publication number: 20210293984
    Abstract: Systems and methods for operating a modular and/or containerized seismic source array system from a marine vessel and installation of same on any vessel of opportunity. The system may be transported, stored, and operated in a plurality of containers, each of which may be CSC approved ISO shipping containers. The containers are attached to the marine vessel by a grid attachment frame installed on the back deck of the vessel, such that a wide variety of container configurations is possible. The containers may be placed longitudinally and transversely on the grid attachment frame and may be multiple levels high. A detachable/removeable slipway may be utilized at the rear of the vessel to facilitate deployment and retrieval of the source arrays. The source array system can be combined with an ocean bottom node deployment or recovery system on the same vessel by utilizing same or similar container footprints.
    Type: Application
    Filed: November 7, 2017
    Publication date: September 23, 2021
    Applicant: Seabed Geosolutions B.V.
    Inventors: Martin John Hartland, Erwan Francois Marie Postic, Jean-Francois Lamothe
  • Patent number: 11059552
    Abstract: Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and/or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and/or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and/or a subsea station for retrieval.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: July 13, 2021
    Assignee: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Geir Valsvik, Bjarne Isfeldt, Jean-Baptiste Danre
  • Patent number: 10787235
    Abstract: A method for cycling autonomous underwater vehicles (AUVs) that record seismic signals during a marine seismic survey. The method includes deploying plural current AUVs on the ocean bottom; recording the seismic signals during the marine seismic survey with plural current AUVs; releasing from an underwater base a new AUV to replace a corresponding current AUV from the plural current AUVs; recovering the current AUV; and continuing to record the seismic signals with the new AUV.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: September 29, 2020
    Assignee: Seabed Geosolutions B.V.
    Inventors: Antoine Lelaurin, Jonathan Grimsdale, Thierry Brizard
  • Publication number: 20200231261
    Abstract: Embodiments, including systems and methods, for remotely controlling underwater vehicles (such as ROVs) and deploying ocean bottom seismic nodes from the underwater vehicles. A direct data connection may be created between an Integrated Navigation System (located on a surface vessel) and a ROV controller/Dynamic Positioning (DP) system (which may be located on the surface vessel and/or the ROV). The INS may be configured to output the ROV target position and ROV position (such as standard 2 or 3 dimensional coordinates) to the DP system. The DP system may be configured to calculate the necessary ROV movements based on directly received data from the INS. Based on a selected ROV target destination or desired ROV action (which may be done automatically or by an operator), the ROV may be automatically positioned and/or controlled based on commands from the DP system based on commands and/or data from the INS.
    Type: Application
    Filed: April 19, 2018
    Publication date: July 23, 2020
    Applicant: Seabed Geosolutions B.V.
    Inventors: Martin John Hartland, Michael Meech
  • Publication number: 20200148321
    Abstract: Seismic autonomous underwater vehicles (AUVs) for recording seismic signals on the seabed. The AUV may be negatively buoyant and comprise an external body (which may be formed of multiple housings) that substantially encloses a plurality of pressure housings. Portions of the external body housing may be acoustically transparent and house one or more acoustic devices for the AUV. The AUV may comprise a main pressure housing that holds substantially all of the electronic components of the AUV, while a second and third pressure housing may be located on either side of the main pressure housing for other electronic components (such as batteries). A plurality of external devices (such as acoustic devices or thrusters) may be coupled to the main pressure housing by external electrical conduit. The AUV may comprise fixed or retractable wings for increased gliding capabilities during subsea travel.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Applicant: Seabed Geosolutions B.V.
    Inventors: Erwan Francois Marie Postic, Thierry Brizard
  • Patent number: 10641914
    Abstract: Embodiments, including apparatuses, systems, and methods, for attaching autonomous seismic nodes directly to a deployment cable. The nodes may be attached to the deployment cable by a removable fastener or insert. The fastener may be a staple that surrounds the cable and rigidly couples to the node to securely fasten the cable to the node. The fastener may be secured into the node itself, a housing or enclosure surrounding the node, or into a receiver or mechanism attached to the node. Other fasteners besides a staple may include bands, wires, pins, straps, ties, clamps, and other similar devices that may be inserted around a portion of the deployment line and be removably coupled to the node. After retrieval of the node, the fastener may be removed and discarded.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: May 5, 2020
    Assignee: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Johan Fredrik Næs
  • Patent number: 10634806
    Abstract: One or more wavegates are located on a seismic surface vessel to substantially prevent or limit waves from crashing onto a back deck of the vessel. The wavegate may comprise one or more steel gates or doors located at or near the aft portion of the vessel, such as on or near the rear end of the back deck, that may be moveable between a closed position and an open position. Each door may be fixed in position and/or be rotated and/or moveable in a horizontal and/or vertical direction between different positions. The wavegate allows the surface vessel to travel backwards and/or in the face of incoming waves while substantially preventing and/or limiting waves from crashing onto the back deck of the marine vessel. The seismic surface vessel may be a deployment vessel or a hybrid seismic shooting and deployment vessel or another marine surface vessel.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: April 28, 2020
    Assignee: Seabed Geosolutions B.V.
    Inventor: Martin John Hartland
  • Patent number: 10620329
    Abstract: A marine node for recording seismic waves underwater. The node includes a spherical body made of a material that has a density similar to a density of the water so that the body is buoyant neutral; a first sensor located in the body and configured to record three dimensional movements of the node; a second sensor located in the body and configured to record pressure waves propagating through the water; and one or more cables connected to the first and second sensors and configured to exit the body to be connected to an external device. The body is coupled to the water.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 14, 2020
    Assignee: Seabed Geosolutions B.V.
    Inventor: Philippe Herrmann
  • Patent number: 10583897
    Abstract: A high angle overboard system and method for the deployment of subsea equipment from a marine vessel. The overboard guide system deploys a deployment line from a surface vessel into a body of water at an angle alpha. The angle alpha may be at least 15 degrees and may be greater than 20, 25, 30, 45, or even 60 degrees or more during some or all portions of the subsea operations. The overboard system may be located near the splashzone of the surface vessel or a distance beneath a water surface. The overboard system may take any number of configurations, such as a cone shape, and/or may comprise a plurality of rollers or one or more sheaves. The overboard system allows a subsea device to be operated at higher deployment angles as compared to prior art subsea operations, such as with A-frame LARS systems.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 10, 2020
    Assignee: Seabed Geosolutions B.V.
    Inventor: Martin John Hartland
  • Publication number: 20200049849
    Abstract: Embodiments, including systems and methods, for deploying ocean bottom seismic nodes. Two or more underwater vehicles (such as remotely operated vehicles (ROVs)) may be deployed by a surface vessel and each connected to the surface vessel by a ROV deployment line. A catenary shape of each ROV deployment line may be modeled for more accurate and efficient subsea ROV operations. Real-time modeling and predictive modeling of the catenary shape of the deployed lines may be performed, and the surface vessel and/or ROVs may be positioned based on the modeled catenary shapes. The ROVs may be automatically positioned and/or controlled based on commands from a dynamic positioning (DP) system. An integrated navigation system (INS) may be located on the surface vessel and directly coupled to the one or more DP systems. The surface vessel may travel backwards during deployment operations and deploy one or more subsea baskets astern from the ROVs.
    Type: Application
    Filed: April 19, 2018
    Publication date: February 13, 2020
    Applicant: Seabed Geosolutions B.V.
    Inventor: Martin John Hartland
  • Patent number: 10543892
    Abstract: Seismic autonomous underwater vehicles (AUVs) for recording seismic signals on the seabed. The AUV may be negatively buoyant and comprise an external body (which may be formed of multiple housings) that substantially encloses a plurality of pressure housings. Portions of the external body housing may be acoustically transparent and house one or more acoustic devices for the AUV. The AUV may comprise a main pressure housing that holds substantially all of the electronic components of the AUV, while a second and third pressure housing may be located on either side of the main pressure housing for other electronic components (such as batteries). A plurality of external devices (such as acoustic devices or thrusters) may be coupled to the main pressure housing by external electrical conduit. The AUV may comprise fixed or retractable wings for increased gliding capabilities during subsea travel.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: January 28, 2020
    Assignee: Seabed Geosolutions B.V.
    Inventors: Erwan Francois Marie Postic, Thierry Brizard
  • Patent number: 10514473
    Abstract: Systems, methods, and apparatuses related to coupling an autonomous seismic node to the seabed. In one embodiment, the node may comprise a plurality of holes on a bottom surface of the node and a plurality of openings on one or more sides and/or surfaces of the node. The bottom surface may comprise a coupling plate that is coupled to the node and/or coupled to a housing or casing that substantially surrounds a pressure node housing. The node may be configured to route water vertically from the bottom holes through the side openings and/or upper holes to decrease the potential of cavitation and fluidization of the seismic sediment and increase the seismic coupling of the node to the seabed.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: December 24, 2019
    Assignee: Seabed Geosolutions B.V.
    Inventor: Johan Fredrik Naes
  • Publication number: 20190353815
    Abstract: Disclosed is an ocean bottom seismic node for recording seismic signals on the seabed. The ocean bottom seismic node may comprise an arched cathedral buoyant body coupled to a substantially flat bottom metal plate. The buoyant body may be formed of hard plastic (such as plastic injection in a mold) and have one or more cathedral type inner structures with columns that form a plurality of interconnected inner chambers, which may be dry or filled with foam and/or act as ballasts. One or more electronic components may be directly attached to the bottom metal plate (and within one or more of the internal cathedral chambers) and covered/protected by the buoyant body that is water and pressure resistant at seabed depths. The edge(s) of the buoyant body may seal around the metal plate on one or more peripheral edges of the plate and buoyant body.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 21, 2019
    Applicant: Seabed Geosolutions B.V.
    Inventors: Erwan Francois Marie Postic, Thierry Brizard
  • Publication number: 20190285762
    Abstract: Apparatuses, systems, and methods for data and/or power transfer to and from an ocean bottom seismic node are described. In an embodiment, an autonomous seismic node is configured with a bulkhead connector assembly that may be coupled to a plug assembly for data and/or power transfer and a pressure cap assembly when utilized subsea. A plurality of pins may be located on the bulkhead assembly in a substantially flat contact surface to obtain an external electrical connection to the node. The pins on the bulkhead assembly may form a flat circuit with an external device, such as a plug assembly or pressure cap assembly. One or more external devices may be coupled to the pressure cap assembly and/or bulkhead connector for increased functionality to the node. A quick release assembly and/or locking ring may be utilized to fasten any external device to the bulkhead connector assembly.
    Type: Application
    Filed: May 28, 2019
    Publication date: September 19, 2019
    Applicant: Seabed Geosolutions B.V.
    Inventors: Arne Henning Rokkan, Richard Edward Henman
  • Publication number: 20190265378
    Abstract: A system, apparatus, and method for individually identifying, handling, tracking, deploying, and recovering a plurality of seismic nodes by an underwater vehicle for subsea operations. The deployment and positioning and retrieval of seismic nodes to and from the seabed may be managed automatically by software and/or manually automated by an ROV operator. The disclosed system may be coupled to a ROV navigation system. The node identification system tracks the position of each seismic node (associated with a unique identification number) within each tray or other node holder at all times, whether the tray is located on board a surface vessel, within an ROV, within a subsea basket, or on the seabed. The identification system is configured to track, select, deploy, and recover a particular seismic node by its unique identification number.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 29, 2019
    Applicant: Seabed Geosolutions B.V.
    Inventors: Michael Meech, Martin John Hartland, Nishan Ragoonanan, Adam Bialowas