Abstract: A method and an apparatus for retrofit electrolization of seawater for production of halogen biocides in situ. A method for effecting an in situ generation of biocide as an aid in anti-biofouling of a device disposed in a volume of salt water includes a) associating a cathode electrode to the device; b) associating an anode electrode to the device with the anode electrode spaced apart from the cathode electrode; and c) hydrolyzing one or more components in the volume of salt water to generate a halogen biocide at the anode electrode with the biocide flowing from the anode electrode away from the cathode electrode as a biocide film, the film responsive to a physical arrangement of the associations of the electrodes with the device.
Abstract: A method and an apparatus for retrofit hydrolization of seawater for production of halogen biocides in situ. A method for effecting an in situ generation of biocide as an aid in anti-biofouling of a device disposed in a volume of salt water includes a) associating a cathode electrode to the device; b) associating an anode electrode to the device with the anode electrode spaced apart from the cathode electrode; and c) hydrolyzing one or more components in the volume of salt water to generate a halogen biocide at the anode electrode with the biocide flowing from the anode electrode away from the cathode electrode as a biocide film, the film responsive to a physical arrangement of the associations of the electrodes with the device.
Abstract: A method and an apparatus for retrofit hydrolization of seawater for production of halogen biocides in situ. A method for effecting an in situ generation of biocide as an aid in anti-biofouling of a device disposed in a volume of salt water includes a) associating a cathode electrode to the device; b) associating an anode electrode to the device with the anode electrode spaced apart from the cathode electrode; and c) hydrolyzing one or more components in the volume of salt water to generate a halogen biocide at the anode electrode with the biocide flowing from the anode electrode away from the cathode electrode as a biocide film, the film responsive to a physical arrangement of the associations of the electrodes with the device.
Abstract: A critical wavelength refractometer is provided. A broadband light source (413) is optically coupled to a sensor (401), the sensor having at least one sensing surface (407). As the light from the broadband light source passes through the sensor, it undergoes multiple internal reflections against the sensing surface. Due to the index of refraction of the material in contact with the sensing surface, a portion of the light passing through the sensor is reflected while a second portion of the light is transmitted through the sensing surface and into the material. A detector (421) coupled to the sensor measures the spectral intensity of the light that passes completely through the sensor after having undergone the multiple internal reflections against the sensing surface. A microprocessor (423) coupled to the detector determines the critical wavelength based on the spectral intensity measurement, thereby allowing the index of refraction of the material to be determined.