Abstract: The present invention relates to a method for estimating the Bone Mineral Density (BMD) using image data collected in emergency situation, i.e. without following specific protocols. In particular, the invention discloses a method for assessing the risk of bone fractures using as one indicator a BMD of one or more bones. The BMD is calculated using a universal constant which provides a value of BMD having a certain error in respect to its true value. However this error does not substantially affect the assessment of the risk of fracture of one or more bones.
Abstract: A method for reducing an amount of data to be processed in a visualization pipeline. The visualization pipeline includes data capture, data compression, data storage, data decompression, and data rendering including the use of a transfer function. The data is divided into blocks in the compression and the reduction is achieved by adaptively selecting a level-of-detail for each block in the step of decompression utilizing a significance measure based on the transfer function.
Type:
Grant
Filed:
October 8, 2004
Date of Patent:
May 3, 2011
Assignee:
Sectra Imtec AB
Inventors:
Claes Lundström, Anders Ynnerman, Patric Ljung
Abstract: A method for reducing an amount of data to be processed in a visualization pipeline. The visualization pipeline includes data capture, data compression, data storage, data decompression, and data rendering including the use of a transfer function. The data is divided into blocks in the compression and the reduction is achieved by adaptively selecting a level-of-detail for each block in the step of decompression utilizing a significance measure based on the transfer function.
Type:
Application
Filed:
October 8, 2004
Publication date:
October 23, 2008
Applicant:
SECTRA IMTEC AB
Inventors:
Claes Lundström, Anders Ynnerman, Patric Ljung
Abstract: A method for reading images on a diagnostic workstation, wherein the method comprises the steps: a sequence of images is loaded into the workstation, a Dynamic Display Protocol (DDP) containing a set of rules included in a hanging protocol that automatically determines how the sequence of images is to be presented on at least one monitor for viewing the images is loaded into the workstation, a set of clinical applications is provided in a storage means, at least one of said clinical applications is configured as being a part of said hanging protocol, said Dynamic Display Protocol is checking if matching criterias for said hanging protocol are met by the sequence of images to be read and a clinical application being part of a hanging protocol which matching criterias are met by the sequence of images to be read is automatically started by said Dynamic Display Protocol.
Abstract: The present invention relates to a computer program product for analysis of a source medical image data set in a medical imaging system, being operable to: identify a user identity; identify at least one role linked to the user identity; load a source medical image data set; allow the user to review the loaded source medical image data set; allow the user to, based on role privileges, interactively perform processing operations on the loaded source medical image data set; create a processing protocol; allow the user to interactively specify at least one medical image data set characteristic to be associated with a processing protocol associater; allow the user to interactively restrict which user(s) to be associated with a user access right of the processing protocol by specifying which role(s) or which user identity/identities to be associated with the user access right; allow the user to interactively further restrict the role privileges; store the processing protocol in a central unit, and, if the user is
Type:
Application
Filed:
July 16, 2004
Publication date:
February 16, 2006
Applicant:
SECTRA IMTEC AB
Inventors:
Hanna Lindmark, Aron Ernvik, Magnus Bjorklund, Qingfen Lin, Magnus Ranlof
Abstract: The present invention relates to a method and a system for measuring in a dynamic sequence of medical images of a moving body part. A reference point being fixed relative to an image geometry and at least one measurement point are defined in the moving body part in one image in the sequence of images. The reference point is then automatically indicated and the at least one measurement point is then automatically tracked in all of the images of the sequence. A length and a direction of at least one vector extending from the reference point to one of the at least one measurement points for each pair of reference point and one measurement point is automatically determined in all of the images of the sequence and at least one of a rate of change of the length and the direction of the at least one vector is automatically determined between selected images in the sequence of images.