Patents Assigned to SeeQC, Inc.
  • Patent number: 10644809
    Abstract: A cryogenic optoelectronic data link, comprising a sending module operating at a cryogenic temperature less than 100 K. An ultrasensitive electro-optic modulator, sensitive to input voltages of less than 10 mV, may include at least one optically active layer of graphene, which may be part of a microscale resonator, which in turn may be integrated with an optical waveguide or an optical fiber. The optoelectronic data link enables optical output of weak electrical signals from superconducting or other cryogenic electronic devices in either digital or analog form. The modulator may be integrated on the same chip as the cryogenic electrical devices. A plurality of cryogenic electrical devices may generate a plurality of electrical signals, each coupled to its own modulator. The plurality of modulators may be resonant at different frequencies, and coupled to a common optical output line to transmit a combined wavelength-division-multiplexed (WDM) optical signal.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: May 5, 2020
    Assignee: SeeQC Inc.
    Inventors: Igor V. Vernik, Oleg A. Mukhanov, Alan M. Kadin, Christopher Thomas Phare, Michal Lipson, Keren Bergman
  • Patent number: 10460796
    Abstract: A system and method for high-speed, low-power cryogenic computing are presented, comprising ultrafast energy-efficient RSFQ superconducting computing circuits, and hybrid magnetic/superconducting memory arrays and interface circuits, operating together in the same cryogenic environment. An arithmetic logic unit and register file with an ultrafast asynchronous wave-pipelined datapath is also provided. The superconducting circuits may comprise inductive elements fabricated using both a high-inductance layer and a low-inductance layer. The memory cells may comprise superconducting tunnel junctions that incorporate magnetic layers. Alternatively, the memory cells may comprise superconducting spin transfer magnetic devices (such as orthogonal spin transfer and spin-Hall effect devices). Together, these technologies may enable the production of an advanced superconducting computer that operates at clock speeds up to 100 GHz.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: October 29, 2019
    Assignee: SeeQC, Inc.
    Inventors: Oleg A. Mukhanov, Alexander F. Kirichenko, Igor V. Vernik, Ivan P. Nevirkovets, Alan M. Kadin