Patents Assigned to Seereal Technologies GmbH
  • Patent number: 11392085
    Abstract: A method of computing a hologram by determining the wavefronts at the approximate observer eye position that would be generated by a real version of an object to be reconstructed. In normal computer generated holograms, one determines the wavefronts needed to reconstruct an object; this is not done directly in the present invention. Instead, one determines the wavefronts at an observer window that would be generated by a real object located at the same position of the reconstructed object. One can then back-transforms these wavefronts to the hologram to determine how the hologram needs to be encoded to generate these wavefronts. A suitably encoded hologram can then generate a reconstruction of the three-dimensional scene that can be observed by placing one's eyes at the plane of the observer window and looking through the observer window.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: July 19, 2022
    Assignee: SEEREAL TECHNOLOGIES GMBH
    Inventors: Norbert Leister, Ralf Haussler, Armin Schwerdtner
  • Patent number: 10884377
    Abstract: A method of computing a hologram for reconstructing an object using a display device. The display device enables a holographic reconstruction of the object. The display device includes a light source and an optical system to illuminate a hologram-bearing medium being encodable with the hologram. The method includes the steps of: (a) computing the hologram by determining the wavefronts at an approximate observer eye position that would be generated by a real version of the object to be reconstructed; and (b) encoding the computed hologram in the hologram-bearing medium.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: January 5, 2021
    Assignee: SEEREAL TECHNOLOGIES GMBH
    Inventor: Armin Schwerdtner
  • Patent number: 10613479
    Abstract: A holographic reconstruction of scenes includes a light modulator, an imaging system with at least two imaging means and an illumination device with sufficient coherent light for illumination of hologram coded in the light modulator. The at least two imaging means are arranged such that a first imaging means is provided for the magnified imaging of the light modulator on a second imaging means. The second imaging means is provided for imaging of a plane of a spatial frequency spectrum of the light modulator in a viewing plane at least one viewing window. The viewing window corresponds to a diffraction order of the spatial frequency spectrum.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 7, 2020
    Assignee: SEEREAL TECHNOLOGIES GMBH
    Inventor: Armin Schwerdtner
  • Patent number: 10401794
    Abstract: A method of computing a hologram by determining the wavefronts at the approximate observer eye position that would be generated by a real version of an object to be reconstructed. In normal computer generated holograms, one determines the wavefronts needed to reconstruct an object; this is not done directly in the present invention. Instead, one determines the wavefronts at an observer window that would be generated by a real object located at the same position of the reconstructed object. One can then back-transforms these wavefronts to the hologram to determine how the hologram needs to be encoded to generate these wavefronts. A suitably encoded hologram can then generate a reconstruction of the three-dimensional scene that can be observed by placing one's eyes at the plane of the observer window and looking through the observer window.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 3, 2019
    Assignee: SEEREAL TECHNOLOGIES GMBH
    Inventors: Norbert Leister, Ralf Haussler, Armin Schwerdtner
  • Patent number: 9989920
    Abstract: A method of computing a hologram for reconstructing an object using a display device. The display device enables a holographic reconstruction of the object. The display device includes a light source and an optical system to illuminate a hologram-bearing medium being encodable with the hologram. The method includes the steps of: (a) computing the hologram by determining the wavefronts at an approximate observer eye position that would be generated by a real version of the object to be reconstructed; and (b) encoding the computed hologram in the hologram-bearing medium.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: June 5, 2018
    Assignee: SEEREAL TECHNOLOGIES GMBH
    Inventor: Armin Schwerdtner
  • Patent number: 9740167
    Abstract: A method of computing a hologram by determining the wavefronts at the approximate observer eye position that would be generated by a real version of an object to be reconstructed. In normal computer generated holograms, one determines the wavefronts needed to reconstruct an object; this is not done directly in the present invention. Instead, one determines the wavefronts at an observer window that would be generated by a real object located at the same position of the reconstructed object. One can then back-transforms these wavefronts to the hologram to determine how the hologram needs to be encoded to generate these wavefronts. A suitably encoded hologram can then generate a reconstruction of the three-dimensional scene that can be observed by placing one's eyes at the plane of the observer window and looking through the observer window.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: August 22, 2017
    Assignee: SEEREAL TECHNOLOGIES GMBH
    Inventors: Norbert Leister, Ralf Haussler, Armin Schwerdtner
  • Patent number: 9513599
    Abstract: A holographic reconstruction of scenes includes a light modulator, an imaging system with at least two imaging means and an illumination device with sufficient coherent light for illumination of hologram coded in the light modulator. The at least two imaging means are arranged such that a first imaging means is provided for the magnified imaging of the light modulator on a second imaging means. The second imaging means is provided for imaging of a plane of a spatial frequency spectrum of the light modulator in a viewing plane at least one viewing window. The viewing window corresponds to a diffraction order of the spatial frequency spectrum.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: December 6, 2016
    Assignee: SEEREAL TECHNOLOGIES GmbH
    Inventor: Armin Schwerdtner
  • Patent number: 9116505
    Abstract: A holographic reconstruction of scenes includes a light modulator, an imaging system with at least two imaging means and an illumination device with sufficient coherent light for illumination of hologram coded in the light modulator. The at least two imaging means are arranged such that a first imaging means is provided for the magnified imaging of the light modulator on a second imaging means. The second imaging means is provided for imaging of a plane of a spatial frequency spectrum of the light modulator in a viewing plane at least one viewing window. The viewing window corresponds to a diffraction order of the spatial frequency spectrum.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: August 25, 2015
    Assignee: SEEREAL TECHNOLOGIES GMBH
    Inventor: Armin Schwerdtner
  • Patent number: 8941902
    Abstract: A method of computing a hologram for reconstructing an object using a display device. The display device enables a holographic reconstruction of the object. The display device includes a light source and an optical system to illuminate a hologram-bearing medium being encodable with the hologram. The method includes the steps of: (a) computing the hologram by determining the wavefronts at an approximate observer eye position that would be generated by a real version of the object to be reconstructed; and (b) encoding the computed hologram in the hologram-bearing medium.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: January 27, 2015
    Assignee: SeeReal Technologies GmbH
    Inventor: Armin Schwerdtner
  • Patent number: 8804220
    Abstract: A method of computing a hologram by determining the wavefronts at the approximate observer eye position that would be generated by a real version of an object to be reconstructed. In normal computer generated holograms, one determines the wavefronts needed to reconstruct an object; this is not done directly in the present invention. Instead, one determines the wavefronts at an observer window that would be generated by a real object located at the same position of the reconstructed object. One can then back-transforms these wavefronts to the hologram to determine how the hologram needs to be encoded to generate these wavefronts. A suitably encoded hologram can then generate a reconstruction of the three-dimensional scene that can be observed by placing one's eyes at the plane of the observer window and looking through the observer window.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 12, 2014
    Assignee: SeeReal Technologies GmbH
    Inventors: Norbert Leister, Ralf Häussler, Armin Schwerdtner
  • Patent number: 8581837
    Abstract: The invention relates to a method and device for tracking the sweet spots of a sweets spot unit for a transmissive electronic display. The aim of the invention is to improve the reproduction quality and the uniformity of illumination in displays of this type. The display contains a sweet spot unit consisting of an illumination matrix (1) and reproduction elements, in addition to an image matrix (4). Once the position of at least one observer's eye (6) has been determined by a control unit using inverse ray tracing, address data for activating illumination elements (LE) of the illumination matrix (1) is provided from the position data in order to prepare the defined sweet spots (5) for said observer's eye (6). To improve the reproduction quality, an additional optical component is used in ray path for the inverse ray tracing process.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 12, 2013
    Assignee: Seereal Technologies GmbH
    Inventors: Sebastien Amroun, Armin Schwerdtner
  • Patent number: 8526088
    Abstract: A device for holographic reconstruction of three-dimensional scenes includes optical focusing means which directs sufficiently coherent light from light means to the eyes of at least one observer via a spatial light modulator that is encoded with holographic information. The device has a plurality of illumination units for illuminating the surface of the spatial light modulator; each unit comprises a focusing element, and a light means that emits sufficiently coherent light such that each of these illumination units illuminates one separate illuminated region of the surface, whereby the focusing element and the light means are arranged such that the light emitted by the light means coincides close to or at the observer eyes.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: September 3, 2013
    Assignee: Seereal Technologies GmbH
    Inventors: Armin Schwerdtner, Ralf Haussler, Norbert Leister
  • Patent number: 8384974
    Abstract: A method of computing a hologram for reconstructing an object using a display device. The display device enables a holographic reconstruction of the object. The display device includes a light source and an optical system to illuminate a hologram-bearing medium being encodable with the hologram. The method includes the steps of: (a) computing the hologram by determining the wavefronts at an approximate observer eye position that would be generated by a real version of the object to be reconstructed; and (b) encoding the computed hologram in the hologram-bearing medium.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: February 26, 2013
    Assignee: SeeReal Technologies GmbH
    Inventor: Armin Schwerdtner
  • Patent number: 8339695
    Abstract: The invention relates to a controllable illumination device for an autostereoscopic or holographic display, which illumination device contains an illumination matrix of primary light sources having at least one luminous element per light source and a controllable light modulator (SLM) and a reproduction matrix. A computer-generated hologram (CGH) illuminated by the primary light sources (11, . . . , 1n) is coded on the controllable light modulator (SLM) and generates, in at least one plane downstream of the SLM, a matrix—reconstructed from the computer-generated hologram (CGH)—of secondary light sources (2) having a secondary light distribution for the purpose of illuminating the reproduction matrix (4) and for the purpose of focussing in light bundles onto each eye of the viewer via an imaging matrix. The CGH is calculated and reconstructed on the basis of the number of and the positions of the viewers and the system parameters.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: December 25, 2012
    Assignee: Seereal Technologies GmbH
    Inventors: Ralf Haussler, Armin Schwerdtner
  • Patent number: 8314981
    Abstract: A video holographic display device includes a light source used to illuminate a hologram-bearing medium encoded with a hologram. The device operates so that only when an observer's eyes are positioned approximately at the image plane of the light source can the holographic reconstruction be seen properly. This contrasts with conventional holographic displays, in which the observer's eyes do not have to be at the image plane in order for a holographic reconstruction to be seen.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: November 20, 2012
    Assignee: Seereal Technologies GmbH
    Inventor: Armin Schwerdtner
  • Patent number: 8259165
    Abstract: The invention relates to an image display device comprising an imaging matrix, which consists of imaging elements which are arranged in a lateral manner, for example, lenticulars or a lens array, and a plurality of point elements which are disposed on a object plane and which are formed from the imaging elements in an observation chamber. In order to reduce imaging errors resulting in the image field curvature of the individual imaging elements of a large observation angle, compensation by a correction matrix, which contains a plurality of optical corrections elements, takes place. An optical correction element is associated with each individual optical imaging element. Said invention can be used, for example, in image or video display devices, such as autostereoscopic displays, multi-user-displays with sweet-spot-units and multi-view-displays, in order to image illuminating elements.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: September 4, 2012
    Assignee: Seereal Technologies GmbH
    Inventor: Armin Schwerdtner
  • Patent number: 8174744
    Abstract: The invention relates to video holograms and devices for reconstructing video holograms, comprising an optical system having a light source, lens and the video hologram having cells arranged in a matrix or a regular pattern with at least one opening per cell, the phase or amplitude of said opening being controllable. The holographic video representations of expanded spatial objects can be achieved in a wide viewing area in real time using controllable displays, whereby the objects are either computer-generated or created by different means. The space-bandwidth product (SBP) of the hologram is thus reduced to a minimum and the periodicity interval of the Fourier spectrum is used as a viewing window on the inverse transformation plane, through which the object is visible in the preceding space. The mobility of the viewer(s) is achieved by tracking the viewing window.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: May 8, 2012
    Assignee: SeeReal Technologies GmbH
    Inventor: Armin Schwerdtner
  • Publication number: 20110304895
    Abstract: A method of computing a hologram for reconstructing an object using a display device is provided. The display device enables a holographic reconstruction of the object. The display device comprises a light source and an optical system to illuminate a hologram-bearing medium being encodable with the hologram. The method comprises the steps of: (a) computing the hologram by determining the wavefronts at an approximate observer eye position that would be generated by a real version of the object to be reconstructed; and (b) encoding the computed hologram in the hologram-bearing medium.
    Type: Application
    Filed: August 24, 2011
    Publication date: December 15, 2011
    Applicant: SeeReal Technologies GmbH
    Inventor: Armin SCHWERDTNER
  • Patent number: 8027071
    Abstract: A video holographic display device operates so that the size of a reconstructed three dimensional scene is a function of the size of the hologram-bearing medium; the reconstructed three dimensional scene can then be anywhere within a volume defined by the hologram-bearing medium and a virtual observer window through which the reconstructed three dimensional scene must be viewed. This contrasts with conventional holograms, in which the size of the reconstructed scene is localised to a far smaller volume and is not a function of the size of the hologram-bearing medium at all.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: September 27, 2011
    Assignee: SeeReal Technologies GmbH
    Inventor: Armin Schwerdtner
  • Patent number: 7969633
    Abstract: The data defining an object to be holographically reconstructed is first arranged into a number of virtual section layers, each layer defining a two-dimensional object data sets, such that a video hologram data set can be calculated from some or all of these two-dimensional object data sets. The first step is to transform each two-dimensional object data set to a two-dimensional wave field distribution. This wave field distribution is calculated for a virtual observer window in a reference layer at a finite distance from the video hologram layer. Next, the calculated two-dimensional wave field distributions for the virtual observer window, for all two-dimensional object data sets of section layers, are added to define an aggregated observer window data set. Then, the aggregated observer window data set is transformed from the reference layer to the video hologram layer, to generate the video hologram data set for the computer-generated video hologram.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: June 28, 2011
    Assignee: SeeReal Technologies GmbH
    Inventor: Armin Schwerdtner