Abstract: In a structure in which a rotating bezel is mounted on a case body, the present invention provides the structure which permits the rotating bezel to be mounted and removed without difficulty even if a brittle material and a deformation difficult material is used in the rotating bezel. When the rotating bezel 25 is pushed downward, the lower end of the engaging rib 25a of the rotating bezel 25 is abutted against the upper end of the holding rib 21d of a glass fixing ring 21 and stress is applied thereby so that the elastically deformable section 21b of the glass fixing ring 21 is elastically deformed inward, that is, toward the side where a clearance is formed. As a result, the engaging rib 25a goes over the holding rib 21d and the rotating bezel 25 is kept in a held state as shown in the figure.
Abstract: The present invention provides a semiconductor device that makes it possible to expose the back side of a die pad as well as a method for fabricating the same. The semiconductor device can include a lead frame that has portions to be sandwiched by first and second molds and a die pad that is down set at a distance greater than the depth of a recessed part of the first mold. The die pad is placed on the bottom of the recessed part of the first mold and the lead frame is disposed so that the portions to be sandwiched are suspended above the first mold. The molding process is carried out as the second mold presses the portions of the lead frame to be sandwiched in the direction of the first mold.
Abstract: In a divers' information display device, a plurality of display modes or the manner of switching features has been improved in order to thus improve the display ability of the device. The divers' information display device has simplified switching of indications and is user-friendly. Specifically, a time mode 201 is changed to a log mode 203 by performing a manipulation, and to a plan and surface mode 202 by performing another manipulation. In the plan and surface mode 202, an amount of intracorporeal nitrogen, a nitrogen discharge completion time, a depth-of-water rank, and a non-decompression diving enabled time are indicated. After plunging into water is acknowledged, any of the time mode 201, plan and surface mode 202, and log mode 203 is automatically changed to a dive mode 204. After the dive mode 204 is designated, if a diver ascends, the dive mode is automatically changed to the plan and surface mode 202.
Abstract: The present invention provides a micro-lens substrate wherein a higher contrast ratio can be obtained when used in a liquid crystal panel and the like. A micro-lens substrate includes a first substrate with concaves for microlenses having a plurality of first concaves and first alignment marks formed on a first glass substrate, a second substrate with concaves for microlenses having a plurality of second concaves and second alignment marks formed on a second glass substrate, a resin layer, microlenses comprised of double convex lenses formed of a resin filled in between the first and second concaves, and spacers.
Abstract: A voltage generation section, which generates voltages for driving the control gates in a plurality of nonvolatile memory cells, has a booster circuit and a voltage control circuit. The voltage control circuit has a plurality of voltage output terminals, and switches and outputs a plurality of voltages inputted from the booster circuit to a plurality of voltage output terminals in accordance with a selection state of the nonvolatile memory cell. The voltage control circuit pre-drives a control gate line by outputting a maximum voltage among the voltages to all of the voltage output terminals in a pre-drive period. A disconnection state, in which no voltage from the booster circuit is outputted, is set in a period prior to the pre-drive period, and a power supply voltage may be outputted instead of the voltage from the booster circuit.
Abstract: The manufacturing method of the invention is applied to production of a semiconductor device including a memory area and a logic circuit area. The method first provides a semiconductor substrate, which has an element separating region formed on the surface of a semiconductor layer, a first conductive layer formed above the semiconductor layer and patterned to give a word gate of the non-volatile memory device, a stopper layer formed above the first conductive layer, and control gates formed as side walls via an ONO membrane on both side faces of the first conductive layer in the memory area. The method patterns the stopper layer in the logic circuit area, forms a resist layer over the whole surface of the memory area and the logic circuit area, and patterns the resist layer.
Abstract: The manufacturing method of the invention is applied to production of a semiconductor device including a memory area and a logic circuit area. The method patterns a stopper layer and a first conductive layer in the memory area, while patterning the stopper layer and the first conductive layer in the logic circuit area to create a dummy gate layer on an element separating region in the logic circuit area. The method forms an ONO membrane over the whole surface of the memory area and the logic circuit area, and further forms a second conductive layer above the ONO membrane. The method carries out anisotropic etching of the second conductive layer, so as to form control gates as side walls via the ONO membrane on both side faces of the first conductive layer in at least the memory area.
Abstract: A new method for patterning in which a degree of flexibility in selection of materials is increased is provided and, in addition, a method for forming a film, a patterning apparatus, a film formation apparatus, an electro-optic apparatus and method for manufacturing the same, electronic equipment, and an electronic apparatus and method for manufacturing the same are provided.
Abstract: Operations wherein print layout(s) is or are edited and print job(s) is or are created are made capable of being carried out efficiently. In template mode, apportionment of image(s) is ordinarily carried out with template(s) being set for each individual page. Group(s) are closed for each page. Package(s) may be such that a plurality of templates are treated as a single pack (multiple pages), and group(s) within package(s) may be such that all are treated as if it or they are the same group(s), the same image(s) being assignable thereto. List(s) (dropdown list(s)) of name(s) of template(s) corresponding to print media size(s) specified at media/printer selection area 146 may be displayed at screen(s) which is or are presented when package(s) is or are employed. Layout editor(s) obtain such template information (dropdown list(s)) from print server machine(s).
Abstract: A tip of a wire formed in the shape of a ball is bonded to an electrode by using a tool. A part of the wire is drawn from the tip bonded to the electrode. A bump is formed on the electrode by deforming a portion of the wire continuous with the tip on the tip by using the tool. The wire is cut while leaving the bump on the electrode.
Abstract: To save power by supplying minimum clocks required for respective blocks. In a clock control system that supplies clocks to a plurality of blocks such as a CPU 4, a bus 5, a peripheral circuit 6 and other circuits 7, a clock supplied from a clock oscillator 1 is supplied to clock control sections 8a, 8b, 8c and 8d that are connected to the blocks 4, 5, 6 and 7, respectively, wherein the clock is converted by the clock control sections 8a, 8b, 8c and 8d into clocks with minimum clock numbers required for operating the blocks 4, 5, 6 and 7, respectively, and supplied to the blocks 4, 5, 6 and 7.
Abstract: The invention provides a thin-film forming device, a thin-film forming method, a device for manufacturing a liquid crystal display, a method for manufacturing a liquid crystal display, a device for manufacturing a thin-film structure, a method for a thin-film structure, a liquid crystal display, a thin-film structure, and an electronic apparatus, objects are to achieve easy control of thickness of a thin film without using rotation means, cost reduction, and miniaturization of the devices. The thin-film forming device for forming a thin film by applying a coating solution onto a substrate, there can be provided an ejection mechanism having a droplet ejection head for ejecting the coating solution onto the substrate, a moving mechanism capable of relatively moving the positions of the droplet ejection head and the substrate, and a control unit for controlling at least one of the ejection mechanism and the moving mechanism.
Abstract: The manufacturing method of the invention is applied to production of a semiconductor device including a memory area and a logic circuit area. The method first provides a semiconductor substrate, which has a conductive layer to make a word gate of the non-volatile memory device, a stopper layer formed above the conductive layer, and control gates formed as side walls on both side faces of the conductive layer via an ONO membrane, which are all located above a semiconductor layer in the memory area, as well as a gate electrode of an insulated gate field effect transistor formed above a semiconductor layer in the logic circuit area. The method subsequently forms an insulating layer over whole surface of the memory area and the logic circuit area on the semiconductor substrate, and carries out anisotropic etching of an upper portion in a part of the insulating layer.
Abstract: A projection lens (46) is located at an end of an optical unit (4) of approximately planarly-viewed L-shape, the projection lens enlarging and projecting a color image combined by a cross dichroic prism of an optical device body and including a linearly-advancing barrel (46B) fixed to a head (49) formed on an optical component casing, a cam barrel (46C) provided with a lever (46A), zoom-magnification converting lenses, focus-adjusting lenses and fixed lens, the linearly-advancing barrel (46B) and the cam barrel (46C) being made of polycarbonate, where a control board is disposed above a projection lens (46) to planarly cover the projection lens (46).
Abstract: A sealing structure having a barrier membrane, with which the overall thickness of a display device can be reduced while ensuring sufficient barrier properties against water and oxygen so as to prevent deterioration of luminous layers. The sealing structure comprises a multi-layered resin membrane 14b for sealing an electronic element section 3 disposed on a substrate 2, which is formed by alternately depositing flattening resin layers 14c and barriers layers 14d on the substrate 2. The flattening resin layers 14c are formed inside a blocking region 14a surrounding the electronic element section 3. A display device having the sealing structure, an electronic apparatus having the display device, and a fabrication method for the display device are also disclosed.
Abstract: A semiconductor device 1000 in accordance with the present invention has a structure having multiple wiring layers, and includes a bonding pad 40a, dummy wiring forming regions 35 including dummy wirings 30, and dummy wiring prohibiting regions 15 where dummy wirings are not formed. The dummy wiring prohibiting regions 15 are provided at least below a region where the bonding pad 40a is formed.
Abstract: The invention provides for the efficient use a substrate region in a liquid crystal device with built-in driving circuits which simultaneously drives a plurality of data lines, etc. One of substrates used for the liquid crystal device may include a plurality of latch circuits for sequentially outputting transfer signals, buffer circuits for outputting sampling-control signals via signal lines by performing wave shaping on the transfer signals input via wires, and sampling switches for sampling, in accordance with the sampling-control signals, video signals supplied to video-signal lines, and for supplying the sampled signals to the corresponding data lines. The buffer circuits each comprise inverters connected in series in three stages in a direction in which the data lines extend, and the inverter in each stage comprise seven inverters connected in parallel in a direction intersecting the extended direction of the data lines.
Abstract: The invention provides an active matrix substrate which allows the film quality of a MIS transistor to be evaluated easily and accurately, an electrooptical device using such an active matrix substrate, and a method of producing such an active matrix substrate. On an active matrix substrate, a film quality evaluation region with a size of 1 mm square is formed at a location where neither an image display area, a scanning line driving circuit, a data line driving circuit, nor a signal line is formed. A semiconductor film (silicon film) for film quality evaluation is formed in the film quality evaluation region using the same layer as a heavily doped source/drain region of a TFT and doped with the same impurity at the same concentration as the source/drain region. The semiconductor film for film quality evaluation is exposed through an opening formed through interlayer insulating films, so that it is possible to immediately start evaluation of the film equality.
Abstract: Color layers R, G, and B of a color filter are arranged in a delta pattern. A data line (212) for applying a voltage to the sub-pixels is connected, through TFD (220), to pixel electrodes (234) of the sub-pixels respectively corresponding to the three colors in a fixed order in a periodic pattern, and pixel electrodes (234) commonly connected to a single data line (212) are arranged to the same side of the data line (212). The potential of the sub-pixels for a particular color are equally influenced by the potential of the sub-pixels of other colors.