Patents Assigned to Sejong University
  • Patent number: 10219004
    Abstract: The present invention is related to a method for moving the position of a base view from an arbitrary GOP (Group Of Pictures) start position to implement an efficient encoding structure in multi-view video encoding. The existing multi-view video encoding method exhibits low encoding efficiency when correlation between the base view and a dependent view is low, since the base view is assumed to be fixed. Moreover, in case the view in a live broadcasting program desired by a producer changes from the base view to another, the user has to consume more bit streams and decoder complexity than those consumed when decoding is performed with respect to the base view. Therefore, to alleviate the drawbacks of the existing multi-view video encoding method, the present invention provides a method for designing syntax elements by which the base view can be moved, thereby supporting an efficient encoding structure.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: February 26, 2019
    Assignees: Electronics and Telecommunications Research Institute, Industry-Academic Cooperation Group of Sejong University
    Inventors: Jung Won Kang, Ha Hyun Lee, Jin Ho Lee, Jin Soo Choi, Jin Woong Kim, Jong Ki Han, Jae Yung Lee
  • Patent number: 10187660
    Abstract: Provided is an apparatus and method for encoding/decoding a moving picture based on adaptive scanning. The moving picture apparatus and method can increase a compression rate based on adaptive scanning by performing intra prediction onto blocks of a predetermined size, and scanning coefficients acquired from Discrete Cosine Transform (DCT) of a residue signal and quantization differently according to the intra prediction mode. The moving picture encoding apparatus includes: a mode selector for selecting and outputting a prediction mode; a predictor for predicting pixel values of pixels to be encoded of an input video based on the prediction mode to thereby output a residue signal block; a transform/quantization unit for performing DCT onto the residue signal block and quantizing the transformed residue signal block; and an encoder for adaptively scanning and encoding the quantized residue signal block based on the prediction mode.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: January 22, 2019
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry Academy Cooperation Foundation of Sejong University
    Inventors: Jeong-Il Seo, Wook-Joong Kim, Kyu-Heon Kim, Kyeong-Ok Kang, Jin-Woo Hong, Yung-Lyul Lee, Ki-Hun Han, Jae-Ho Hur, Dong-Gyu Sim, Seoung-Jun Oh
  • Patent number: 9924198
    Abstract: The present invention is related to a method for moving the position of a base view from an arbitrary GOP (Group Of Pictures) start position to implement an efficient encoding structure in multi-view video encoding. The existing multi-view video encoding method exhibits low encoding efficiency when correlation between the base view and a dependent view is low, since the base view is assumed to be fixed. Moreover, in case the view in a live broadcasting program desired by a producer changes from the base view to another, the user has to consume more bit streams and decoder complexity than those consumed when decoding is performed with respect to the base view. Therefore, to alleviate the drawbacks of the existing multi-view video encoding method, the present invention provides a method for designing syntax elements by which the base view can be moved, thereby supporting an efficient encoding structure.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: March 20, 2018
    Assignees: Electronics and Telecommunications Research Institute, Industry-Academic Cooperation Group of Sejong University
    Inventors: Jung Won Kang, Ha Hyun Lee, Jin Ho Lee, Jin Soo Choi, Jin Woong Kim, Jong Ki Han, Jae Yung Lee
  • Publication number: 20180048916
    Abstract: Provided is an apparatus and method for encoding/decoding a moving picture based on adaptive scanning. The moving picture apparatus and method can increase a compression rate based on adaptive scanning by performing intra prediction onto blocks of a predetermined size, and scanning coefficients acquired from Discrete Cosine Transform (DCT) of a residue signal and quantization differently according to the intra prediction mode. The moving picture encoding apparatus includes: a mode selector for selecting and outputting a prediction mode; a predictor for predicting pixel values of pixels to be encoded of an input video based on the prediction mode to thereby output a residue signal block; a transform/quantization unit for performing DCT onto the residue signal block and quantizing the transformed residue signal block; and an encoder for adaptively scanning and encoding the quantized residue signal block based on the prediction mode.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 15, 2018
    Applicants: Electronics and Telecommunications Research Instit ute, Kwangwoon University Research Institute for Indust ry Cooperation, Industry Academy Cooperation Foundation of Sejong University
    Inventors: Jeong-Il SEO, Wook-Joong KIM, Kyu-Heon KIM, Kyeong-Ok KANG, Jin-Woo HONG, Yung-Lyul LEE, Ki-Hun HAN, Jae-Ho HUR, Dong-Gyu SIM, Seoung-Jun OH
  • Publication number: 20180041763
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 8, 2018
    Applicants: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon JEONG, Hae-Chul CHOI, Jeong-Il SEO, Seung-Kwon BEACK, In-Seon JANG, Jae-Gon KIM, Kyung-Ae MOON, Dae-Young JANG, Jin-Woo HONG, Jin-Woong KIM, Yung-Lyul LEE, Dong-Gyu SIM, Seoung-Jun OH, Chang-Beom AHN, Dae-Yeon KIM, Dong-Kyun KIM
  • Patent number: 9838714
    Abstract: Provided is an apparatus and method for encoding/decoding a moving picture based on adaptive scanning. The moving picture apparatus and method can increase a compression rate based on adaptive scanning by performing intra prediction onto blocks of a predetermined size, and scanning coefficients acquired from Discrete Cosine Transform (DCT) of a residue signal and quantization differently according to the intra prediction mode. The moving picture encoding apparatus includes: a mode selector for selecting and outputting a prediction mode; a predictor for predicting pixel values of pixels to be encoded of an input video based on the prediction mode to thereby output a residue signal block; a transform/quantization unit for performing DCT onto the residue signal block and quantizing the transformed residue signal block; and an encoder for adaptively scanning and encoding the quantized residue signal block based on the prediction mode.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: December 5, 2017
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry Academy Cooperation Foundation of Sejong University
    Inventors: Jeong-Il Seo, Wook-Joong Kim, Kyu-Heon Kim, Kyeong-Ok Kang, Jin-Woo Hong, Yung-Lyul Lee, Ki-Hun Han, Jae-Ho Hur, Dong-Gyu Sim, Seoung-Jun Oh
  • Patent number: 9819942
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: November 14, 2017
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute For Industry Cooperation, Industry-Academic Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Patent number: 9737259
    Abstract: A system and method for providing an image capable of realizing conversion of a 3D tissue structure into which an implant is inserted into a 2D image using a contour technique are provided.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: August 22, 2017
    Assignees: Industry-Academic Cooperation Foundation, Yonsei University, Industry-Academia Cooperation Group of Sejong University
    Inventors: Myeong Ki Hong, Byeong Keuk Kim, Jin Yong Ha
  • Patent number: 9733467
    Abstract: A smart glass uses a guided self-assembled photonic crystal, including a photonic crystal layer that is interposed between a pair of conductive glass plates. The smart glass includes a first material and a second material having a different refractive index from the first material and surrounding the first material. Thereby, the smart glass has a color, even when a dye is not included, by strongly reflecting light in a specific wavelength range incident to the photonic crystal layer. This is because the first material is formed regularly to have a constant distance by guided self-assembly, and the smart glass thereby may obtain a target color by randomly adjusting the distance between the first materials.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: August 15, 2017
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Industry Academy Cooperation Foundation of Sejong University
    Inventors: Hyun Sub Kim, Nak Kyoung Kong, Young Sub Oh, Jin Hee Lee, Yong Ho Seo
  • Patent number: 9736484
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: August 15, 2017
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute For Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Patent number: 9693055
    Abstract: The present invention is related to a method for moving the position of a base view from an arbitrary GOP (Group Of Pictures) start position to implement an efficient encoding structure in multi-view video encoding. The existing multi-view video encoding method exhibits low encoding efficiency when correlation between the base view and a dependent view is low, since the base view is assumed to be fixed. Moreover, in case the view in a live broadcasting program desired by a producer changes from the base view to another, the user has to consume more bit streams and decoder complexity than those consumed when decoding is performed with respect to the base view. Therefore, to alleviate the drawbacks of the existing multi-view video encoding method, the present invention provides a method for designing syntax elements by which the base view can be moved, thereby supporting an efficient encoding structure.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: June 27, 2017
    Assignees: Electronics and Telecommunications Research Institute, Industry-Academic Cooperation Group of Sejong University
    Inventors: Jung Won Kang, Ha Hyun Lee, Jin Ho Lee, Jin Soo Choi, Jin Woong Kim, Jong Ki Han, Jae Yung Lee
  • Patent number: 9563098
    Abstract: A method of and device for controlling a reflective color of a photonic crystal display device, capable of precisely controlling the distance between particles to display RGB full colors covering desired wavelength ranges. The method and device include using a mixed dispersion medium containing two or more kinds of solvents having different dielectric constants as a dispersion medium for a photonic crystal in a composition for a photonic crystal display device of which colors are controlled through the application of an electric field.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: February 7, 2017
    Assignees: Samsung Electronics Co., Ltd, Industry-Academia Cooperation Group of Sejong University
    Inventors: Kyunghoon Cha, Wonmok Lee, Jongin Lee, Sungkoo Han, Kyeonghyeon Ko
  • Patent number: 9365590
    Abstract: The present disclosure relates to a method for more easily and economically producing a selenophene-fused aromatic compound derivative containing various substituents and the selenophene-fused aromatic compound produced according to the method, and the selenophene-fused aromatic compound can be used for various purposes such as an intermediate of an anti-bacterial or anticancer substance, an indicator of which color is changed depending on a solvent, or a fluorescent substance.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: June 14, 2016
    Assignees: Industry-Academia Cooperation Group of Sejong University, Samsung Life Public Welfare Foundation
    Inventors: Dongyeol Lim, Do-Hyun Nam, Rashmi Dubey, Hangeun Lee
  • Patent number: 9241212
    Abstract: The ray tracing apparatus for three-dimensional (3D) graphics includes a Central Processing Unit (CPU) for constructing a first Acceleration Structure (AS) for a static object, and creating a second dynamic object by performing a Level Of Detail (LOD) operation on the first dynamic object and a ray tracing core for performing ray tracing based on the first AS and a second AS for the second dynamic object. The CPU or the ray tracing core constructs the second AS for the second dynamic object.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: January 19, 2016
    Assignees: SILICONARTS, INC., Industry-Academia Cooperation Foundation of Sejong University
    Inventors: Jin Suk Hur, Woo Chan Park
  • Patent number: 9225982
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 29, 2015
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Insitute of Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Publication number: 20150358620
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Application
    Filed: August 11, 2015
    Publication date: December 10, 2015
    Applicants: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Publication number: 20150350658
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Application
    Filed: August 11, 2015
    Publication date: December 3, 2015
    Applicants: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Patent number: 9176880
    Abstract: A cache memory system and a caching method for a tile-based rendering may be provided. Each of cache lines in the cache memory system may include delayed-replacement information. The delayed-replacement information may indicate whether texture data referred to at a position of an edge of a tile is included in a cache line. When a cache line corresponding to an access-requested address is absent in the cache memory system, the cache memory system may select and remove a cache line to be removed from an associative cache unit, based on delayed-replacement information.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: November 3, 2015
    Assignees: Samsung Electronics Co., Ltd., Industry-Academia Cooperation Group of Sejong University
    Inventors: Won Jong Lee, Sang Oak Woo, Seok Yoon Jung, Woo Chan Park, Young Sik Kim
  • Patent number: 9154784
    Abstract: The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: October 6, 2015
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Research Institute for Industry Cooperation, Industry-Academia Cooperation Group of Sejong University
    Inventors: Se-Yoon Jeong, Hae-Chul Choi, Jeong-Il Seo, Seung-Kwon Beack, In-Seon Jang, Jae-Gon Kim, Kyung-Ae Moon, Dae-Young Jang, Jin-Woo Hong, Jin-Woong Kim, Yung-Lyul Lee, Dong-Gyu Sim, Seoung-Jun Oh, Chang-Beom Ahn, Dae-Yeon Kim, Dong-Kyun Kim
  • Patent number: 9133156
    Abstract: The present disclosure relates to a novel method for preparing selenyl-substituted aromatic aldehyde compounds by forming a selenolate nucleophile and performing a nucleophilic substitution reaction between the selenolate nucleophile and an aromatic aldehyde starting material.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: September 15, 2015
    Assignees: Sejong University Industry Academy Cooperation Foundation, Samsung Life Public Welfare Foundation
    Inventors: Dongyeol Lim, Do-Hyun Nam, Rashmi Dubey