Abstract: Phenotypic antimicrobial susceptibility testing (AST), the gold-standard diagnostic that indicates whether an antimicrobial will be clinically effective, often suffer the slowest times-to-result for the most resistant pathogens. Here we introduce novel assays to be performed in parallel with standard AST assays that provide additional resistance information and enable rapid, same-shift reporting of AST results for a plurality of pathogens.
Abstract: An improved system, method and interface for automated rapid antimicrobial susceptibility testing (AST) is disclosed which includes, in one aspect, a carrier population station comprising a workstation having a graphic user interface (GUI). The GUI accepts information from a lab technologist, including information related to a scope of testing to be performed on a patient sample. The GUI controls intelligent assignment of patient samples to test panels in a manner that maximize utilization of the test carrier by grouping together samples of similar tests scopes and advantageously testing those samples using one multiplexed test panel. Customizing workflow in accordance with test scope to facilitate parallel processing of multiple samples advantageously reduces laboratory waste, decreases test latencies, increases AST system throughput and efficiency, and thus lowers the costs to the AST lab.