Abstract: A method for manufacturing a semiconductor component that includes the use of multiple layers of photoresist. A first layer of electrically conductive material is formed over a substrate and a first layer of photoresist is formed over the first layer of electrically conductive material. A portion of the first layer of photoresist is removed leaving photoresist having sidewalls separated by a gap. A second layer of electrically conductive material having first and second sidewalls is formed in the gap. A second layer of photoresist is formed over the first layer of photoresist and over the second layer of electrically conductive material. Portions of the second layer of photoresist and the first layer of photoresist are removed to uncover the first and second edges of the second layer of electrically conductive material. A protective structure is formed over the first and second edges of the second electrically conductive material.
Abstract: An electronic device can include a substrate including an underlying doped region and a semiconductor layer overlying the substrate. A trench can have a sidewall and extend at least partly through the semiconductor layer. The electronic device can further include a first conductive structure adjacent to the underlying doped region, an insulating layer, and a second conductive structure within the trench. The insulating layer can be disposed between the first and second conductive structures, and the first conductive structure can be disposed between the insulating layer and the underlying doped region. Processes of forming the electronic device may be performed such that the first conductive structure includes a conductive fill material or a doped region within the semiconductor layer. The first conductive structure can allow the underlying doped region to be farther from the channel region and allow RDSON to be lower for a given BVDSS.
Abstract: In one embodiment, a semiconductor device is formed to include a plurality of conductor layers that interconnect electrical signals between semiconductor elements of the semiconductor device. A metal shield layer is formed overlying a portion of the plurality of conductor layers. A signal re-distribution layer is formed overlying the metal shield layer.
Abstract: A semiconductor component resistant to the formation of a parasitic bipolar transistor and a method for manufacturing the semiconductor component using a reduced number of masking steps. A semiconductor material of N-type conductivity having a region of P-type conductivity is provided. A doped region of N-type conductivity is formed in the region of P-type conductivity. Trenches are formed in a semiconductor material and extend through the regions of N-type and P-type conductivities. A field oxide is formed from the semiconductor material such that portions of the trenches extend under the field oxide. The field oxide serves as an implant mask in the formation of source regions. Body contact regions are formed from the semiconductor material and an electrical conductor is formed in contact with the source and body regions. An electrical conductor is formed in contact with the backside of the semiconductor material.