Abstract: A single electron transistor conjugated to a bacteriophage form a detectable probe where an RF signal identify the location of such probe at the site of specific biological matrix and provide a unique electronic signal such as a Coulomb Staircase and where such signal act as a diagnostic beacon and where such probe and a detector form a mesoscopic detector. The detector uses: a bioprobe containing the phage with its conjugated SET and the properties of the phage specificity; phage mobility within the biological environment and the phage ability to act as a carrier for the SET; and the SET's ultimate use as a beacon for the detection.
Abstract: The illustrated embodiments of the invention include an automated method of assaying a viral and antibody analyte in a sample in a portable, handheld microfluidic reader having a SAW detector with a minimal mass sensitivity limitation. The automated method includes the steps of automatically performing the assay with the SAW detector with enhanced sensitivity as in Optikus I, but also includes the steps of automatically disposing a second portion of the sample on a microarray, selectively automatically probing the second portion of the sample for antibodies corresponding to the at least one selected virus using the microarray, and automatically reading the microarray using a fluorescent camera to identify antibodies in the second portion of the sample.
Type:
Application
Filed:
June 25, 2020
Publication date:
June 17, 2021
Applicant:
Sensor-Kinesis Corp.
Inventors:
Josh Shachar, Philip Felgner, Marc Madou
Abstract: The invention includes a method of assaying an analyte in a sample in a portable, handheld microfluidic reader. The method includes the steps of: inserting the sample in the reader; capturing the analyte with a first antibody having a DNA tag attached thereto; capturing the analyte in the sample with a second antibody attached to a surface or having a magnetic nanoparticle (MNP) attached thereto; where a sandwich including the magnetic nanoparticle, first and second antibodies, the analyte and the DNA tag is formed; replicating the DNA tag using isothermal amplification to a predetermined amount of DNA tags detectable by a detector sufficient to overcome the minimal mass sensitivity limitations of the detector; and measuring the amount of replicated DNA tags using the detector. The invention also includes an apparatus or handheld portable field microfluidic reader in which the method is performed.
Abstract: The illustrated embodiments include a method of operating a SAW sensor to detect a sample in a fluid which includes the steps of: providing a SAW sensor with a functionalized detection lane in a handheld, portable assay and sensor system; maintaining the functionalized detection lane of the SAW sensor dry until the sample is fluidicly disposed in the detection lane; fluidicly disposing the sample in the functionalized detection lane; removing fluid the functionalized detection lane to concentrate the sample in the functionalized detection lane to increase the probability of a specific antibody-antigen interaction; washing the functionalized detection lane so that substantially only the specific antigen-antibody interaction remains in the functionalized detection lane; removing fluid from the functionalized detection lane again; and measuring concentration of the sample while the functionalized detection lane is fluid-free.
Abstract: A field portable diagnostic apparatus uses a rotatable disk in which a microfluidic circuit is defined. The microfluidic circuit includes a centrifugal separation chamber receiving a sample to stratify the sample. A magnetic bead holding chamber is communicated to a mixing chamber, where mass amplifying functionalized magnetic-nanoparticles, held in a buffer solution and contained in the magnetic bead holding reservoir communicated to mixing chamber, are mixed with the separated fluid delivered to mixing chamber from the separation chamber. The functionalized magnetic nanoparticles conjugate with a target analyte in the sample. A magnet in proximity to a SAW chamber including a SAW detector draws the functionalized magnetic nanoparticles toward antibodies immobilized on the SAW sensor surface A wash reservoir is communicated to the SAW sensor chamber, and a cleanup/waste reservoir is communicated to the SAW chamber for receive fluid after it has passed through the SAW chamber.
Type:
Application
Filed:
February 25, 2019
Publication date:
July 4, 2019
Applicant:
Sensor Kinesis Corp.
Inventors:
Josh Yehoshua Shachar, Sam Gurley, Aaron Cipriano, Peter Yin, Rob Purnell, Marc Rocklinger, Ming Petrullo, Stelica Stelea
Abstract: An cartridge is combined with a smart device which is capable of communicating with a network to perform a portable, fast, field assay of a small sample biological analyte. A closed microfluidic circuit for mixes the analyte with a buffer with functionalized magnetic beads capable of being specifically combined with the analyte. A detector communicates with the microfluidic circuit in which the mixed analyte, buffer and combined functionalized magnetic beads are sensed. A microcontroller is coupled to detector for controlling the detector and for data processing an output assay signal from the detector. A user interface communicates with the microcontroller for providing user input and for providing user output through the smart device to the network.
Type:
Application
Filed:
October 4, 2018
Publication date:
January 31, 2019
Applicant:
Sensor Kinesis Corp.
Inventors:
Yehoshua Shachar, Sam Gurley, Aaron Cipriano, Peter Yin, Rob Purnell, Marc Rocklinger, Ming Petrullo, Stelica Stelea, Marlon S. Thomas