Patents Assigned to Sensor-Kinesis Corporation
  • Patent number: 10386327
    Abstract: A bioFET cell for measuring a time dependent characteristic of an analyte bearing fluid includes a source, a drain, a semiconductive single wall carbon nanotube network layer extending between the source and drain electrodes and electrically coupled there between, a gate insulatively spaced from and disposed over and extending between the source and drain electrodes, a layer of at least one selected antibody disposed on and linked to the polymer layer to functionalize the semiconductive single wall carbon nanotube network layer to a selected target biomarker corresponding to the at least one selected antibody so that electron transport into the semiconductive single wall carbon nanotube network layer is facilitated, where the source, drain and gate electrodes with the carbon nanotube network layer form a defined channel through which the analyte bearing fluid may flow, and a high impedance source follower amplifier coupled to the source electrode.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: August 20, 2019
    Assignee: Sensor Kinesis Corporation
    Inventor: Josh Shachar
  • Patent number: 10324059
    Abstract: A bioFET cell for measuring a time dependent characteristic of an analyte bearing fluid includes a source, a drain, a semiconductive single wall carbon nanotube network layer extending between the source and drain electrodes and electrically coupled there between, a gate insulatively spaced from and disposed over and extending between the source and drain electrodes, a layer of at least one selected antibody disposed on and linked to the polymer layer to functionalize the semiconductive single wall carbon nanotube network layer to a selected target biomarker corresponding to the at least one selected antibody so that electron transport into the semiconductive single wall carbon nanotube network layer is facilitated, where the source, drain and gate electrodes with the carbon nanotube network layer form a defined channel through which the analyte bearing fluid may flow, and a high impedance source follower amplifier coupled to the source electrode.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: June 18, 2019
    Assignee: Sensor-Kinesis Corporation
    Inventor: Josh Shachar
  • Patent number: 10215728
    Abstract: A bioFET cell for measuring a time dependent characteristic of an analyte bearing fluid includes a source, a drain, a semiconductive single wall carbon nanotube network layer extending between the source and drain electrodes and electrically coupled there between, a gate insulatively spaced from and disposed over and extending between the source and drain electrodes, a layer of at least one selected antibody disposed on and linked to the polymer layer to functionalize the semiconductive single wall carbon nanotube network layer to a selected target biomarker corresponding to the at least one selected antibody so that electron transport into the semiconductive single wall carbon nanotube network layer is facilitated, where the source, drain and gate electrodes with the carbon nanotube network layer form a defined channel through which the analyte bearing fluid may flow, and a high impedance source follower amplifier coupled to the source electrode.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 26, 2019
    Assignee: Sensor Kinesis Corporation
    Inventor: Josh Shachar
  • Publication number: 20180334697
    Abstract: A method of reducing the limit of detection in a surface acoustic wave sensor (SAW) includes the steps of: attaching a plurality of DNA segments to a detection surface of a SAW; performing a CRISPR/Cas9 preparation of the DNA segments to cut and splice a selected protein into at least one of a plurality of the DNA segments; conjugating a nanoparticle to the selected protein; and measuring the number of DNA segments with conjugated nanoparticles using a surface acoustic wave sensor (SAW). The nanoparticle may be modified to form a single electron transistor (SET) which generates a detectable signal in response to RF or ultrasonic excitation which is indicative of binding of the corresponding nanoparticle to a selected target analyte.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 22, 2018
    Applicant: Sensor Kinesis Corporation
    Inventors: Yehoshua Shachar, Roger Kornberg, Ralph Eugene Davis
  • Patent number: 9810661
    Abstract: A bioFET cell for measuring a time dependent characteristic of an analyte bearing fluid includes a source, a drain, a semiconductive single wall carbon nanotube network layer extending between the source and drain electrodes and electrically coupled there between, a gate insulatively spaced from and disposed over and extending between the source and drain electrodes, a layer of at least one selected antibody disposed on and linked to the polymer layer to functionalize the semiconductive single wall carbon nanotube network layer to a selected target biomarker corresponding to the at least one selected antibody so that electron transport into the semiconductive single wall carbon nanotube network layer is facilitated, where the source, drain and gate electrodes with the carbon nanotube network layer form a defined channel through which the analyte bearing fluid may flow, and a high impedance source follower amplifier coupled to the source electrode.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: November 7, 2017
    Assignee: Sensor Kinesis Corporation
    Inventor: Josh Shachar
  • Patent number: 9329173
    Abstract: An aptamer-based solid-state electrochemical biosensor for label-free detection of Salmonella enterica serovars utilizing immobilized aptamers. The device is realized by forming a matrix array of parallel capacitors, thus allowing the realization of low-cost, portable, fully integrated devices. Protein-aptamer binding modulates the threshold voltage of a circuit, changing the impedance (capacitance) of the circuit. This circuit is further characterized by an electrode coded with a p-Si substrate, enhancing the affinity between the Salmonella outer membrane proteins (OMPs) and the aptamer. An aptamer embedded detection plate is configured within a testing lid device that fits a standard, commercially available polymer specimen jar. A sample is mixed with broth for incubation and cultivation of any present Salmonella bacteria to obtain acceptable concentration of the pathogen for testing. The information obtained can then be transmitted by wireless network.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: May 3, 2016
    Assignee: Sensor-Kinesis Corporation
    Inventors: Yehoshua Shachar, Winston Wu, Thomas Chen, Leslie Farkas, Brett Jordan, Paladin Luboff, Herwin Chan, Kyle Zimmerman
  • Patent number: 9310363
    Abstract: An aptamer-based solid-state electrochemical biosensor for label-free detection of Salmonella enterica serovars utilizing immobilized aptamers. The device is realized by forming a matrix array of parallel capacitors, thus allowing the realization of low-cost, portable, fully integrated devices. Protein-aptamer binding modulates the threshold voltage of a circuit, changing the impedance (capacitance) of the circuit. This circuit is further characterized by an electrode coded with a p-Si substrate, enhancing the affinity between the Salmonella outer membrane proteins (OMPs) and the aptamer. An aptamer embedded detection plate is configured within a testing lid device that fits a standard, commercially available polymer specimen jar. A sample is mixed with broth for incubation and cultivation of any present Salmonella bacteria to obtain acceptable concentration of the pathogen for testing. The information obtained can then be transmitted by wireless network.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 12, 2016
    Assignee: Sensor-Kinesis Corporation
    Inventors: Yehoshua Shachar, Winston Wu, Thomas Chen, Leslie Farkas, Brett Jordan, Paladin Luboff, Herwin Chan, Kyle Zimmerman