Patents Assigned to Sensor Research & Development
-
Patent number: 8441168Abstract: The subject of the present invention is a set of SAW (surface acoustic wave) based sensor tag device embodiments system for remotely sensing and/or providing identification information. These sensor/tag devices would operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification number and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. As such the device is elegantly simple, low-cost, and rugged. The device is wirelessly interrogated by the interrogator which is described elsewhere.Type: GrantFiled: August 6, 2009Date of Patent: May 14, 2013Assignee: Applied Sensor Research & DevelopmentInventors: Jacqueline H. Hines, Leland P. Solie
-
Patent number: 8094008Abstract: An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes.Type: GrantFiled: November 7, 2008Date of Patent: January 10, 2012Assignee: Applied Sensor Research & Development CorporationInventors: Leland P. Solie, Jacqueline H. Hines
-
Patent number: 7500379Abstract: An acoustic wave sensor array device is provided for the detection, identification, and quantification of chemicals and biological elements dispersed in fluids. The sensor array device is capable of the simultaneous characterization of a fluid for multiple analytes of interest. A substrate has a plurality of channels formed therein and a sensor material layer applied in a bottom of the channels. The sensor material layer has a shear acoustic wave speed lower than a shear acoustic wave speed in said substrate. The channels may have the same material in each channel or different materials in at least two of the channels. A surface acoustic wave transducer and at least one surface acoustic wave reflector, or at least two transducers is formed on a surface of the substrate opposite the channels at a portion of the substrate that is thinned by the channels, so that the acoustic tracks of the surface acoustic wave device extend along the channels.Type: GrantFiled: June 26, 2007Date of Patent: March 10, 2009Assignee: Applied Sensor Research & Development CorporationInventor: Jacqueline H. Hines
-
Patent number: 7434989Abstract: A temperature measurement system is characterized by at least one passive surface acoustic wave (SAW) temperature sensor. The sensor includes at least one piezoelectric substrate having an interdigital SAW transducer disposed upon the piezoelectric substrate for conversion of an RF signal into an acoustic wave and vice versa. At least three additional SAW elements are also disposed on the substrates in a manner such that they define two acoustic propagation paths that are non-parallel relative to the crystal axes of the substrates, and such that the temperature coefficients of delay in the two tracks differ. The SAW elements receive a signal from the SAW transducer and produce response signals. The response signals combine to produce a signal with a power spectral density such that the integrated power within each of two specified portions of the spectrum provides an indicator of the temperature.Type: GrantFiled: September 7, 2006Date of Patent: October 14, 2008Assignee: Applied Sensor Research & Development CorporationInventor: Leland P. Solie
-
Patent number: 7268662Abstract: A hydrogen detecting system is characterized by a passive surface acoustic wave (SAW) sensor. The sensor includes a piezoelectric substrate having a self assembled monolayer arranged on at least a portion of the substrate to create a hydrophobic surface. A palladium nanocluster thin film is deposited on the monolayer and an interdigital SAW transducer is disposed upon the piezoelectric substrate for conversion of an RF signal into an acoustic wave and vice versa. At least one additional SAW element is also disposed on the substrate and spaced from the SAW transducer. The SAW element receives a signal from the SAW transducer and produces a response signal. The response signal is modified by the palladium nanocluster film due to a change in conductivity of the palladium nanocluster film upon exposure to hydrogen. This change in the response signal is measured by an interrogator, and yields a measure of the hydrogen concentration to which the sensor was exposed.Type: GrantFiled: January 19, 2006Date of Patent: September 11, 2007Assignee: Applied Sensor Research & Development CorporationInventors: Jacqueline H. Hines, Leland P. Solie
-
Concrete maturity monitoring system using passive wireless surface acoustic wave temperature sensors
Publication number: 20070046479Abstract: A method and apparatus for wireless measurement of the temperature in curing concrete is characterized by the use of a plurality of surface acoustic wave temperature sensors embedded in the concrete. An interrogation signal from an external transceiver system is modified by the sensors in accordance with the temperature of the concrete adjacent to the sensors. The return signals from the sensors are processed in a correlation device to identify each signal as originating from a specific sensor. A microprocessor calculates the maturity of the concrete based on the data received from the sensors as well as data input corresponding to the type of concrete. The maturity data is used to analyze the strength and integrity of the concrete structure being built.Type: ApplicationFiled: August 26, 2005Publication date: March 1, 2007Applicant: Applied Sensor Research & Development CorporationInventor: Jacqueline Hines -
Patent number: 6435007Abstract: A sensor system that monitors agent breakthrough through a vapor barrier and related test process. The system includes a substantially airtight test chamber for retaining the vapor barrier, which may be formed of one or more layers of one or more materials. A sensor element array placed adjacent to the barrier under test includes elements that are sensitive to one or more agents of interest and elements that are insensitive to such agents. The insensitive elements provide a baseline reference signal that is compared to the output signal of the sensitive elements. As the agent contacts the array, the electrical signal output from the sensitive elements changes in comparison to that of the reference elements. The sensor array is sensitive enough to detect low levels of the agent when the agent passes through the barrier. A control system is used to regulate and monitor environmental conditions within the chamber and to process electrical signals from the sensor array.Type: GrantFiled: April 27, 2000Date of Patent: August 20, 2002Assignee: Sensor Research & Development CorporationInventors: Dean Smith, Todd Mlsna, Jeremy Hammond
-
Patent number: 6378370Abstract: A method and apparatus for improving temperature stability of surface-launched acoustic wave sensors is described. The system includes a plurality of acoustic wave delay lines or resonators coated with identical films which are physically, chemically, biologically, or otherwise sensitive to one or more target chemical or biological analytes. At least one of the delay lines or resonators, referred to herein as reference channels, is used as a frequency reference to which the oscillation frequencies of the remainder of the delay lines or resonators, referred to as sensing channels, are compared. A thin coating of material that is preferably a passivation layer not sensitive to the analytes, is disposed upon the surface-launched acoustic wave sensor. The passivation layer covers sensing films on the reference channels, blocking or impeding interaction of the sensing films and the analytes thereby.Type: GrantFiled: March 8, 2000Date of Patent: April 30, 2002Assignee: Sensor Research & Development Corp.Inventors: Reichl B. Haskell, Joshua J. Caron
-
Patent number: 6029891Abstract: An apparatus for reading radially patterned magnetic data from circular objects, such as tokens used by the gaming, transportation, entertainment and other industries. A method of reading the data from such a token.Type: GrantFiled: May 29, 1998Date of Patent: February 29, 2000Assignee: Sensor Research & DevelopmentInventors: Carl J. Freeman, Joshua J. Caron, Reichl B. Haskell, Joseph R. Jahoda