Patents Assigned to Sensor Technologies LLC
-
Publication number: 20240344874Abstract: Disclosed herein are devices, systems, and methods for accurately determining fluid level using Ultra Wideband (UWB) positioning or localization. UWB utilizes a radio-frequency (RF) technology to enable the accurate measurement of the time-of-flight of a radio signal and UWB positioning can operate in Time-Difference-of-Arrival (TDoA) mode, Two-Way-Ranging (TWR) mode, and Phase-Difference-of-Arrival (PDoA) mode. The systems disclosed herein include multiple anchor devices having a UWB antenna(s) and positioned in fixed location(s) over the fluid to be measured. The anchor devices serve as reference points for UWB communication with a remote float device, which emits RF signals and floats on the surface of the fluid to be measured.Type: ApplicationFiled: February 13, 2024Publication date: October 17, 2024Applicant: Aloft Sensor Technologies LLCInventors: Ryan Kincaid, David Brown
-
Patent number: 12053164Abstract: A portable sampler, the sampler including a sampler assembly having a housing that includes a receiver defined therein for interchangeably receiving a number of removable inlet assemblies, the removable inlet assemblies including a respirable inlet assembly and a thoracic inlet assembly. The respirable inlet assembly includes a hybrid cyclone assembly, the hybrid cyclone assembly including an impaction stage and a cyclone in series. The thoracic inlet assembly includes an inlet slot configured to function as a size-selective inlet. Another thoracic inlet assembly includes a housing having a number of openings configured to receive a sample airflow; an inlet insert through which an inlet aperture is defined; a prequalification chamber defined between a lower surface of the housing and an upper surface of the inlet insert; and a protrusion extending downward from the lower surface of the housing into the inlet aperture of the inlet insert to from an inlet slot.Type: GrantFiled: December 18, 2020Date of Patent: August 6, 2024Assignees: Colorado State University Research Foundation, Access Sensor Technologies LLCInventors: David Leith, John Volckens, Christian L'Orange, Daniel D. Miller-Lionberg
-
Patent number: 11898892Abstract: Disclosed herein are devices, systems, and methods for accurately determining fluid level using Ultra Wideband (UWB) positioning or localization. UWB utilizes a radio-frequency (RF) technology to enable the accurate measurement of the time-of-flight of a radio signal and UWB positioning can operate in Time-Difference-of-Arrival (TDoA) mode, Two-Way-Ranging (TWR) mode, and Phase-Difference-of-Arrival (PDoA) mode. The systems disclosed herein include multiple anchor devices having a UWB antenna(s) and positioned in fixed location(s) over the fluid to be measured. The anchor devices serve as reference points for UWB communication with a remote float device, which emits RF signals and floats on the surface of the fluid to be measured.Type: GrantFiled: February 15, 2022Date of Patent: February 13, 2024Assignee: Aloft Sensor Technologies LLCInventors: Ryan Kincaid, David Brown
-
Patent number: 11616190Abstract: A hydrophone may include a first piezoelectric cable including alternating sections of positive polarity and negative polarity, and a second piezoelectric cable including alternating sections of negative polarity and positive polarity. At least a portion of each section of positive polarity of the first piezoelectric cable may be bonded or adhered to at least a portion of a section of negative polarity of the second piezoelectric cable. A method of manufacturing a hydrophone may include winding or coiling a first piezoelectric cable and a second piezoelectric cable at the same time to create a series of wound sections including cables, the wound sections alternating with a series of not wound sections including the cables.Type: GrantFiled: December 20, 2018Date of Patent: March 28, 2023Assignee: B&L Sensor Technologies, LLCInventors: Lawrence Fishman, Ching-Yu Lin
-
Patent number: 11474005Abstract: A portable sampling device includes a sampling housing at least partially enclosing an inner chamber; at least one pumping element disposed within the inner chamber and configured to facilitate airflow through the device; and at least one gas sensor disposed within the inner chamber and configured to detect and/or characterize one or more gases in the airflow.Type: GrantFiled: May 23, 2019Date of Patent: October 18, 2022Assignees: Colorado State University Research Foundation, Access Sensor Technologies LLCInventors: John Volckens, Daniel D. Miller-Lionberg, Josephine Hofstetter, Casey William Quinn, Ellison Carter, David Leith
-
Publication number: 20220252444Abstract: Disclosed herein are devices, systems, and methods for accurately determining fluid level using Ultra Wideband (UWB) positioning or localization. UWB utilizes a radio-frequency (RF) technology to enable the accurate measurement of the time-of-flight of a radio signal and UWB positioning can operate in Time-Difference-of-Arrival (TDoA) mode, Two-Way-Ranging (TWR) mode, and Phase-Difference-of-Arrival (PDoA) mode. The systems disclosed herein include multiple anchor devices having a UWB antenna(s) and positioned in fixed location(s) over the fluid to be measured. The anchor devices serve as reference points for UWB communication with a remote float device, which emits RF signals and floats on the surface of the fluid to be measured.Type: ApplicationFiled: February 15, 2022Publication date: August 11, 2022Applicant: Aloft Sensor Technologies LLCInventors: Ryan Kincaid, David Brown
-
Patent number: 11248946Abstract: Disclosed herein are devices, systems, and methods for accurately determining fluid level using Ultra Wide-Band (UWB) positioning or localization. UWB utilizes a radio frequency (RF) technology to enable the accurate measurement of the time-of-flight of a radio signal and UWB positioning can operate in Time-Difference-of-Arrival (TDoA) mode, Two-Way-Ranging (TWR) mode, and Phase-Difference-of-Arrival (PDoA) mode. The systems disclosed herein include multiple anchor devices having a UWB antenna(s) and positioned in fixed location(s) over the fluid to be measured. The anchor devices serve as reference points for UWB communication with a remote float device, which emits RF signals and floats on the surface of the fluid to be measured.Type: GrantFiled: May 19, 2021Date of Patent: February 15, 2022Assignee: Aloft Sensor Technologies LLCInventors: Ryan Kincaid, David Brown
-
Publication number: 20200343438Abstract: A hydrophone may include a first piezoelectric cable including alternating sections of positive polarity and negative polarity, and a second piezoelectric cable including alternating sections of negative polarity and positive polarity. At least a portion of each section of positive polarity of the first piezoelectric cable may be bonded or adhered to at least a portion of a section of negative polarity of the second piezoelectric cable. A method of manufacturing a hydrophone may include winding or coiling a first piezoelectric cable and a second piezoelectric cable at the same time to create a series of wound sections including cables, the wound sections alternating with a series of not wound sections including the cables.Type: ApplicationFiled: December 20, 2018Publication date: October 29, 2020Applicant: B & L Sensor Technologies, LLCInventors: Lawrence FISHMAN, Ching-Yu LIN
-
Patent number: 10446008Abstract: A room monitoring device designed and intended to detect a bowel movement (BM) of a person occupying the room, such as a baby or infant or an adult with special needs or in a care facility. The device tests the air for particular substances such as, but not limited to, methane and hydrogen sulfide. The test is performed multiple times per minute to reduce the chances of a false-positive detection. Once the device detects a positive BM, it alerts a user via Wi-Fi message, SMS text message, visual alerts (e.g., flashing lights), and/or audio alerts. This device may be paired with existing monitoring devices, such as a baby monitor with a remote camera.Type: GrantFiled: April 17, 2018Date of Patent: October 15, 2019Assignee: Sensor Technologies, LLCInventor: Brad W. Ansley
-
Patent number: 9947203Abstract: A room monitoring device designed and intended to detect a bowel movement (BM) of a person occupying the room, such as a baby or infant or an adult with special needs or in a care facility. The device tests the air for particular substances such as, but not limited to, methane and hydrogen sulfide. The test is performed multiple times per minute to reduce the chances of a false-positive detection. Once the device detects a positive BM, it alerts a user via Wi-Fi message, SMS text message, visual alerts (e.g., flashing lights), and/or audio alerts. This device may be paired with existing monitoring devices, such as a baby monitor with a remote camera.Type: GrantFiled: June 6, 2017Date of Patent: April 17, 2018Assignee: Sensor Technologies, LLCInventor: Brad W. Ansley
-
Patent number: 9671383Abstract: A room monitoring device designed and intended to detect a bowel movement (BM) of a person occupying the room, such as a baby or infant or an adult with special needs or in a care facility. The device tests the air for particular substances such as, but not limited to, methane and hydrogen sulfide. The test is performed multiple times per minute to reduce the chances of a false-positive detection. Once the device detects a positive BM, it alerts a user via Wi-Fi message, SMS text message, visual alerts (e.g., flashing lights), and/or audio alerts. This device may be paired with existing monitoring devices, such as a baby monitor with a remote camera.Type: GrantFiled: January 27, 2015Date of Patent: June 6, 2017Assignee: Sensor Technologies, LLCInventor: Brad W. Ansley
-
Patent number: 8568026Abstract: A temperature measurement system capable of operating in harsh environments including a temperature sensor having an antenna, diode, and dielectric layer disposed on the object of interest is provided, wherein the antenna includes a buried portion that extends through and is electrically coupled to the object of interest, and an exposed portion disposed upon an outer surface of the dielectric layer and the diode is coupled between the object of interest and the exposed portion of the antenna. The antenna is configured to receive interrogating signals from a transmitter, and to transmit response signals corresponding to the resonant frequency of the temperature sensor and its harmonics, which are indicative of the measured temperature of the object of interest. A receiver detects the response signals and correlates the frequency to a known temperature response of the dielectric material. Methods of making and using the temperature measurement system are also provided.Type: GrantFiled: January 7, 2013Date of Patent: October 29, 2013Assignee: Wireless Sensor Technologies, LLCInventors: Otto J. Gregory, John R. Conkle, Thomas J. Birnbaum
-
Publication number: 20130125386Abstract: A temperature measurement system capable of operating in harsh environments including a temperature sensor having an antenna, diode, and dielectric layer disposed on the object of interest is provided, wherein the antenna includes a buried portion that extends through and is electrically coupled to the object of interest, and an exposed portion disposed upon an outer surface of the dielectric layer and the diode is coupled between the object of interest and the exposed portion of the antenna. The antenna is configured to receive interrogating signals from a transmitter, and to transmit response signals corresponding to the resonant frequency of the temperature sensor and its harmonics, which are indicative of the measured temperature of the object of interest. A receiver detects the response signals and correlates the frequency to a known temperature response of the dielectric material. Methods of making and using the temperature measurement system are also provided.Type: ApplicationFiled: January 7, 2013Publication date: May 23, 2013Applicant: Wireless Sensor Technologies, LLCInventor: Wireless Sensor Technologies, LLC
-
Patent number: 8348504Abstract: A temperature measurement system capable of operating in harsh environments including a temperature sensor having an antenna, diode, and dielectric layer disposed on the object of interest is provided, wherein the antenna includes a buried portion that extends through and is electrically coupled to the object of interest, and an exposed portion disposed upon an outer surface of the dielectric layer and the diode is coupled between the object of interest and the exposed portion of the antenna. The antenna is configured to receive interrogating signals from a transmitter, and to transmit response signals corresponding to the resonant frequency of the temperature sensor and its harmonics, which are indicative of the measured temperature of the object of interest. A receiver detects the response signals and correlates the frequency to a known temperature response of the dielectric material. Methods of making and using the temperature measurement system are also provided.Type: GrantFiled: May 12, 2010Date of Patent: January 8, 2013Assignee: Wireless Sensor Technologies, LLCInventors: Otto J. Gregory, John R. Conkle, Thomas J. Birnbaum
-
Patent number: 7268878Abstract: Disclosed is a portable fluorescence correlation spectroscopy instrument that includes an excitation source, at least one of a light focusing element positioned to receive light emitted by the excitation source, a detector for detecting light, the detector positioned to receive light emitted by a sample excited by the excitation source, and a correlator coupled to the detector, the correlator for processing data received at the detector and providing data including autocorrelation data, crosscorrelation data, or a combination thereof.Type: GrantFiled: August 1, 2003Date of Patent: September 11, 2007Assignee: Sensor Technologies LLCInventors: David E. Wolf, Dylan A. Bulseco
-
Patent number: 6471710Abstract: A probe position sensing system for accurately determining a spatial location in a coordinate system of a distal end of a probe assembly. The probe assembly includes an articulated arm having a pair of sections interconnected by a flexible joint and at least one element. The element extends through the joint and is positioned to be subjected to a degree of flexure due to relative displacement of the sections. A flexure of the element induces a change in a physical property associated with the element. An instrument monitors the physical property and derives an angle between adjacent sections from variations of the physical property.Type: GrantFiled: August 11, 2000Date of Patent: October 29, 2002Assignee: Advanced Sensor Technology, LLCInventor: Frank Bucholtz