Patents Assigned to SENSOR
  • Publication number: 20190062809
    Abstract: The present disclosure relates to methods and devices for amplifying a plurality of targets in a single PCR run while distinguishing between clinically relevant amplification and amplification from other sources such as from background contamination. The methods and devices further enable discrimination between gram-positive, gram-negative and fungal infections as wells as identify antimicrobial resistance genes. When applying the methods and devices of the invention, the species or genus of an infection(s), and genus of a fungal co-infection(s) or category of bacterial (gram-positive or negative) co-infection(s) are identified. Species identification of co-infections can also be achieved. Further, when applying the methods and devices of the invention, organisms which are likely to be contaminating organisms from a blood draw are identified.
    Type: Application
    Filed: August 24, 2017
    Publication date: February 28, 2019
    Applicant: Clinical Micro Sensors, Inc. (dba GenMark Diagnostics, Inc.)
    Inventors: Bradley Adam Brown, Milena Iacobelli Martinez, Lisa Lynn Freeman--Cook, John Jay Harvey, Christin J. Shaw, Anna Maria Al-Khouri
  • Publication number: 20190059746
    Abstract: A sensor for physiology sensing may be configured to generate oscillation signals for emitting radio frequency pulses for range gated sensing. The sensor 402 may include a radio frequency transmitter configured to emit the pulses and a receiver configured to receive reflected ones of the emitted radio frequency pulses. The received pulses may be processed to detect physiology characteristics such as motion, sleep, respiration and/or heartbeat. In some embodiments, the sensor may employ a circuit including a pulse generator configured to generate signal pulses. The circuit may also include a dielectric resonator oscillator configured to generate a radio frequency oscillating signal. A switched oscillation circuit may be coupled to the pulse generator and the dielectric resonator oscillator. The switched circuit may be configured to generate a pulsed radio frequency oscillating signal for emitting the radio frequency pulses.
    Type: Application
    Filed: October 31, 2018
    Publication date: February 28, 2019
    Applicant: RESMED SENSOR TECHNOLOGIES LIMITED
    Inventors: Stephen McMahon, Michael Wren, Spencer Terry Wood, Kieran Conway, Conor Heneghan
  • Publication number: 20190066455
    Abstract: A system, including: a sensor that monitors containers as the containers move along a production line; a rejection device; a controller communicatively connected to the sensor and the rejection device, wherein the controller is programmed to determine whether a container is associated with a match condition in response to a signal received from the sensor, the match condition reflecting that the container is associated with predetermined properties or characteristics, in response to a match condition, determine a pass result, and otherwise determine a fail result, determine a velocity of the production line, dynamically determine a correction amount for a reject position, track a position of the container on the production line, and in response to the fail result, outputs a signal to actuate the rejection device that removes the container from the production line based on the velocity of the production line, the dynamically determined correction amount, and the position of the container on the production line
    Type: Application
    Filed: May 29, 2018
    Publication date: February 28, 2019
    Applicant: Sensors Incorporated
    Inventor: David J. Kotula
  • Patent number: 10215728
    Abstract: A bioFET cell for measuring a time dependent characteristic of an analyte bearing fluid includes a source, a drain, a semiconductive single wall carbon nanotube network layer extending between the source and drain electrodes and electrically coupled there between, a gate insulatively spaced from and disposed over and extending between the source and drain electrodes, a layer of at least one selected antibody disposed on and linked to the polymer layer to functionalize the semiconductive single wall carbon nanotube network layer to a selected target biomarker corresponding to the at least one selected antibody so that electron transport into the semiconductive single wall carbon nanotube network layer is facilitated, where the source, drain and gate electrodes with the carbon nanotube network layer form a defined channel through which the analyte bearing fluid may flow, and a high impedance source follower amplifier coupled to the source electrode.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 26, 2019
    Assignee: Sensor Kinesis Corporation
    Inventor: Josh Shachar
  • Patent number: 10218921
    Abstract: An imaging method includes receiving electromagnetic radiation at a focal plane array of a handheld device. The electromagnetic radiation is processed within the handheld device, and visible images are displayed on the handheld device. The displayed visible images are indicative of a scene, and include a designator and a designator identifier when a high frequency laser pulse is in the scene. The designator and designator identifier represent the high frequency pulsed electromagnetic radiation received by the focal plane array when a high frequency pulse is present in the scene.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: February 26, 2019
    Assignee: Sensors Unlimited, Inc.
    Inventors: Henry W. Neal, Joshua Lund, Marc Hansen, Timothy Beystrum, Dmitry Zhilinsky, Michael D. Daugherty, Bert Blumenthal, Jonathan Nazemi, Andrew Eckhardt
  • Patent number: 10215857
    Abstract: The invention relates to a depth sensor module and depth sensing method. The depth sensor module and method is adapted to include a light detector part and emitting part with a least two light sources spatially offset in the direction of the triangulation baseline. In some of the embodiments, the pixel field of the image sensor in the light detector part consists of time-of-flight pixels. Depth measurements derived by triangulation can be used to calibrate depth maps generated by the time-of-flight measurements.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: February 26, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Thierry Oggier, Mathias Deschler, Stéphane Kaloustian
  • Publication number: 20190056538
    Abstract: A diffusive layer including a laminate of a plurality of transparent films is provided. At least one of the plurality of transparent films includes a plurality of diffusive elements with a concentration that is less than a percolation threshold. The plurality of diffusive elements are optical elements that diffuse light that is impinging on such element. The plurality of diffusive elements can be diffusively reflective, diffusively transmitting or combination of both. The plurality of diffusive elements can include fibers, grains, domains, and/or the like. The at least one film can also include a powder material for improving the diffusive emission of radiation and a plurality of particles that are fluorescent when exposed to radiation.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Publication number: 20190056439
    Abstract: The present invention relates to an apparatus for measuring low frequency noise having shielding characteristics, and enhance the accuracy of measurement of low frequency noise of a sample by blocking the flow of electromagnetic waves in the gap between the chamber and the door.
    Type: Application
    Filed: July 13, 2017
    Publication date: February 21, 2019
    Applicant: KOREA SENSOR LAB CO., LTD.
    Inventor: Soo Min LEE
  • Patent number: 10209362
    Abstract: A pulse repetition frequency detector, tracker, and decoder includes a two-dimensional InGaAs FPA of photodetectors configured to convert laser signals into electrical signals. A ROIC is operatively connected to the InGaAs FPA to condition electrical signals from the InGaAs FPA. A module is operatively connected to the ROIC to decode pulsed codes in the conditioned electrical signals and to provide output for tracking decoded laser spots in two-dimensional space. In another aspect, an imaging device includes an imager with an imaging FPA operatively connected to a first ROIC for imaging. A pulse repetition frequency detector, tracker, and decoder including a second ROIC as described above, is operatively connected to the first ROIC. The first and second ROICs are operatively connected to correlate the position of decoded laser spots in images from the imaging FPA.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: February 19, 2019
    Assignee: Sensors Unlimited, Inc.
    Inventors: Jonathan Nazemi, Robert Rozploch, John P. Barby, Andrew Eckhardt
  • Patent number: 10212320
    Abstract: An imaging unit of a camera for recording the surroundings has an image sensor with a lens for the display of the surroundings on the image sensor. The image sensor and the lens are held by a carrier. The camera additionally has a circuit hoard and at least the signal and the supply lines of the image sensor arranged on the carrier. The image sensor is mounted on a carrier substrate, which similar to the lens, is arranged on the carrier at a distance from the circuit board, and has a flexible electrical connection to the circuit board.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: February 19, 2019
    Assignee: FIRST SENSOR MOBILITY GMBH
    Inventor: Erik Busse
  • Patent number: 10210129
    Abstract: A digital communication interface includes a deserializer module, a gearbox module, and a parallel communication channel connecting the gearbox module to the deserializer module. The deserializer module has a fixed deserialization factor. The gearbox module has a temporal translation factor to change bit-length of words received through the parallel communication channel to bit-length suitable for a downstream data path.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: February 19, 2019
    Assignee: Sensors Unlimited, Inc.
    Inventor: Richard J. Fustos
  • Patent number: 10211048
    Abstract: A solution for fabricating a semiconductor structure is provided. The semiconductor structure includes a plurality of semiconductor layers grown over a substrate using a set of epitaxial growth periods. During each epitaxial growth period, a first semiconductor layer having one of: a tensile stress or a compressive stress is grown followed by growth of a second semiconductor layer having the other of: the tensile stress or the compressive stress directly on the first semiconductor layer. One or more of a set of growth conditions, a thickness of one or both of the layers, and/or a lattice mismatch between the layers can be configured to create a target level of compressive and/or shear stress within a minimum percentage of the interface between the layers.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: February 19, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Wenhong Sun, Rakesh Jain, Jinwei Yang, Maxim S. Shatalov, Alexander Dobrinsky, Remigijus Gaska, Michael Shur
  • Patent number: 10203414
    Abstract: A method of identifying at least one target includes receiving a series of images over time of pulsed energy reflected from the at least one target, each image including a plurality of pulses related to different first and second pulse codes, detecting the pulses in an image of the received images, and outputting pulse detection information including XY coordinates and arrival time information associated with the respective detected pulses. The method further includes associating the pulse detection information with the first and second pulse codes based on the arrival time information, and generating output position information for the at least one target in space that indicates output positions for the at least one target based on the XY coordinates and being associated with the corresponding first and second pulse codes.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: February 12, 2019
    Assignee: Sensors Unlimited, Inc.
    Inventors: Jonathan Nazemi, Andrew Eckhardt
  • Publication number: 20190039920
    Abstract: A solution for disinfecting a fluid, colloid, mixture, and/or the like using ultraviolet radiation is provided. An ultraviolet transparent enclosure can include an inlet and an outlet for a flow of media to be disinfected. The ultraviolet transparent enclosure can include a material that is configured to prevent biofouling within the ultraviolet transparent enclosure. A set of ultraviolet radiation sources are located adjacent to the ultraviolet transparent enclosure and are configured to generate ultraviolet radiation towards the ultraviolet transparent enclosure.
    Type: Application
    Filed: October 8, 2018
    Publication date: February 7, 2019
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Saulius Smetona, Timothy James Bettles, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10197750
    Abstract: A light guiding structure is provided. The structure includes an anodized aluminum oxide (AAO) layer and a fluoropolymer layer located immediately adjacent to a surface of the AAO layer. Light propagates through the AAO layer in a direction substantially parallel to the fluoropolymer layer. An optoelectronic device can be coupled to a surface of the AAO layer, and emit/sense light propagating through the AAO layer. Solutions for fabricating the light guiding structure are also described.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: February 5, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10199531
    Abstract: A heterostructure for use in fabricating an optoelectronic device is provided. The heterostructure includes a layer, such as an n-type contact or cladding layer, that includes thin sub-layers inserted therein. The thin sub-layers can be spaced throughout the layer and separated by intervening sub-layers fabricated of the material for the layer. The thin sub-layers can have a distinct composition from the intervening sub-layers, which alters stresses present during growth of the heterostructure.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: February 5, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Daniel Billingsley, Robert M. Kennedy, Wenhong Sun, Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10199536
    Abstract: A method of fabricating a device using a layer with a patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers with a high concentration of aluminum, is provided. The patterned surface can include a substantially flat top surface and a plurality of stress reducing regions, such as openings. The substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the stress reducing regions can have a characteristic size between approximately 0.1 microns and approximately five microns and a depth of at least 0.2 microns. A layer of group-III nitride material can be grown on the first layer and have a thickness at least twice the characteristic size of the stress reducing regions. A device including one or more of these features also is provided.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: February 5, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Wenhong Sun, Jinwei Yang, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10198653
    Abstract: In an illustrative embodiment, a system for identifying products on a production line includes image capturing devices that acquire images of containers moving along a production line at an inspection location. The system also includes a rejection device and a controller that configures the image capturing devices for image acquisition based on properties of the containers, identifies a product associated with each of the containers based on a portion of a product identification code and a portion of additional features detected in the images, and determines whether the identified product matches predetermined properties or characteristics, resulting in a pass result, otherwise a non-pass result occurs. When a non-pass result occurs, the controller outputs a signal to actuate the rejection device that removes the container from the production line.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: February 5, 2019
    Assignee: Sensors Incorporated
    Inventor: David J. Kotula
  • Patent number: 10199535
    Abstract: A semiconductor structure comprising a buffer structure and a set of semiconductor layers formed adjacent to a first side of the buffer structure is provided. The buffer structure can have an effective lattice constant and a thickness such that an overall stress in the set of semiconductor layers at room temperature is compressive and is in a range between approximately 0.1 GPa and 2.0 GPa. The buffer structure can be grown using a set of growth parameters selected to achieve the target effective lattice constant a, control stresses present during growth of the buffer structure, and/or control stresses present after the semiconductor structure has cooled.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: February 5, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Jinwei Yang, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10199537
    Abstract: A semiconductor structure comprising a buffer structure and a set of semiconductor layers formed adjacent to a first side of the buffer structure is provided. The buffer structure can have an effective lattice constant and a thickness such that an overall stress in the set of semiconductor layers at room temperature is compressive and is in a range between approximately 0.1 GPa and 2.0 GPa. The buffer structure can be grown using a set of growth parameters selected to achieve the target effective lattice constant a, control stresses present during growth of the buffer structure, and/or control stresses present after the semiconductor structure has cooled.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: February 5, 2019
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Jinwei Yang, Alexander Dobrinsky, Michael Shur, Remigijus Gaska