Abstract: Techniques to release a security tag are described. One embodiment may comprise a tag housing, a tack body, and a linear clamp disposed within the tag housing to retain the tack body. The linear clamp may move in a substantially linear direction in response to force to release the tack body from the linear clamp. Other embodiments are described and claimed.
Type:
Grant
Filed:
May 30, 2003
Date of Patent:
April 4, 2006
Assignee:
Sensormatic Electronics Corporation
Inventors:
Dennis L. Hogan, John Chamberlain, Thang Nguyen, Franklin H. Valade, Jr.
Abstract: A system for minimizing the effect of null zones in an interrogation zone of a marker detection system. The system includes a reference antenna system configured to produce a first reference electromagnetic field during a first time period. The antenna system also includes a phase canceling antenna system configured to produce a second electromagnetic field substantially in phase with the reference electromagnetic field during the first time period and a third electromagnetic field substantially out of phase with the reference electromagnetic field during the first time period. The phasing of the first field or the second and third fields may be continuously switched while the phase of the other is held constant. A method of spatially shifting null zones in an interrogation zone of a marker detection system is also provided.
Type:
Grant
Filed:
May 27, 2004
Date of Patent:
April 4, 2006
Assignee:
Sensormatic Electronics Corporation
Inventors:
Brent F. Balch, John O'Connell, William H. Hurd, Tom Spalding
Abstract: An EAS or RFID system including first and second core antenna systems. The first and second antenna systems establish magnetic fields having opposite directions and are positioned so that the fields at least partially cancel outside of an interrogation zone for detecting an EAS or RFID tag. There is also provided an EAS or RFID wherein the magnetic field direction established by a core antenna is varied at certain time intervals to minimize the effects of null zones in the interrogation zone.
Type:
Grant
Filed:
May 18, 2004
Date of Patent:
March 28, 2006
Assignee:
Sensormatic Electronics Corporation
Inventors:
Stewart E. Hall, Brent F. Balch, Richard L. Copeland
Abstract: A video surveillance camera enclosure that includes a camera housing for receiving a video surveillance camera chassis through a lower end. In one embodiment, the housing is adapted to be inserted into an opening in a ceiling member and includes a flange near the lower end and a plurality of mounting clamps for engaging the perimeter of an opening in the ceiling. The video surveillance camera chassis includes a plurality of positioning members on the perimeter of the chassis. The positioning members are engageable with a plurality of alignment flanges on the interior of the housing to guide the chassis into a preselected position within the housing. Final insertion of the chassis into the housing and electrical connection via blind mating connectors is by threaded fasteners on the positioning members and flanges. In an alternate embodiment, the housing is installed in an enclosure that is not installed in a ceiling but is self-contained and can be located outdoors.
Type:
Grant
Filed:
June 30, 2000
Date of Patent:
January 31, 2006
Assignee:
Sensormatic Electronics Corporation
Inventors:
John Douglas Wulf, Luis E. Anderson, Mark A. Hauge, James R. Paolantonio, Steven W. Schieltz
Abstract: A phase compensated loop antenna having phase compensation elements distributed along the length thereof. The phase compensation elements compensate for current variations along the antenna length resulting from increasing the length of the antenna. A nested loop configuration incorporating at least one phase compensated loop antenna is also provided.
Abstract: A tag has an intelligent function such that when radiation of a burst signal synchronized with a power source frequency from a transmission antenna (20) is detected, it transmits a response burst signal after completion of reception. Then, when a predetermined number of burst signals have been detected, the tag outputs an alarm. Also, an alarm device main body outputs an alarm when a predetermined number of response burst signals have been received. To provide article monitoring apparatus and article monitoring system which determine whether or not an unpaid article is taken out with reliability. According to the present invention, it is possible to provide article monitoring apparatus and article monitoring system which determine whether or not an unpaid article is taken out with reliability.
Abstract: Methods of operation of a data reader and security tag deactivation system whereby a data reader such as a barcode scanner is equipped with EAS deactivation coils or modules disposed in the vicinity of the read volume or generally proximate thereto and the system is operable to permit reading of the ID tag (such as the barcode label) on an item, and upon a successful read, the deactivation unit is operable to (1) sense the presence of an EAS tag; (2) if presence of an EAS tag is sensed, energize the deactivation coil/module to deactivate the EAS tag; and (3) sense if the EAS tag is deactivated. If the EAS tag is sensed to have been deactivated, the system signals as such and a next item may be scanned. If the EAS tag is sensed to have not been deactivated, the system proceeds to alternate operational steps to handle the exception.
Abstract: A ringdown canceller is provided for electronic article surveillance (EAS) tag response processing, which uses two adaptive replica signals and compares the replica signal phase to the receive signal phase to determine if there is a stationary EAS tag in the interrogation or detection zone. The adaptive replica buffers allow the system to adjust to changing ambient conditions, and adjust rapidly to an EAS tag that suddenly appears in the detection zone and becomes stationary, or to a stationary EAS tag that suddenly leaves the detection zone. The ringdown response of the transmitter circuit is constant, just like a stationary tag, and is removed from the receive signal in the same manner as a stationary tag.
Abstract: A video signal connection apparatus comprises an array of individual video signal connector contacts arranged in a matrix having connector contact rows and connector contact columns, the individual video signal connector contacts extending in a first connection direction, a connector having individual connector contacts corresponding in number to the individual video signal connector contacts of the array, the individual connector contacts extending in a second connection direction, the second connection direction being orthogonal to the first connection direction and conductors interconnecting the individual video signal connector contacts to the individual connector contacts.
Type:
Grant
Filed:
July 12, 2000
Date of Patent:
September 13, 2005
Assignee:
Sensormatic Electronics Corporation
Inventors:
Edwin S. Thompson, William A. Crable, Jr., Christopher M. Mullins, Leroy Davis, Gregory Gelman, Robert E. Germain, Albert Harding, Harold Johnson
Abstract: A deactivation apparatus for an electronic article surveillance tag having a plurality of layers and an equivalent resonant circuit containing an inductor and a capacitor is provided. The apparatus includes: a capacitor formed by a pair of conductive capacitor plates separated apart by a dielectric layer; an inductor connected to each of the pair of capacitor plates where an electromagnetic field of a preselected frequency at a first magnitude impinging upon the tag causes the equivalent resonant circuit to resonate and produce a detectable response from the tag; and, an electrically weakened area in the dielectric layer between the pair of conductive capacitor plates where the electromagnetic field at a second magnitude higher than the first magnitude impinging upon the tag causes a conductive path through the weakened area electrically connecting the pair of capacitor plates together and deactivating the tag.
Abstract: A controller for a video surveillance camera enclosure including a method and apparatus for controlling a stepper motor by decoding a command for a specific camera action, setting the state of a state machine, and instructing a position control process and a speed control process based upon the state of the state machine. A drive signal is send from said position control process to a motor current process and a phase control process to generate the current and phase signals to control the stepper motor. The stepper motor drive current is preferably a non-linear current. The speed control signal includes ramp up and ramp down speed control for gradually increasing motor speed and gradually decreasing motor speed, respectively. Another aspect of the invention detects a plurality of pan and/or tilt positions to reset the pan and/or tilt motor step count to a known count associated with a known location without the need to pan and/or tilt past a preselected home position.
Type:
Grant
Filed:
December 15, 2004
Date of Patent:
July 5, 2005
Assignee:
Sensormatic Electronics Corporation
Inventors:
James R. Paolantonio, Luis E. Anderson, Mark A. Hauge, Steven W. Schieltz, John Douglas Wulf
Abstract: The invention concerns a system for detecting multiple tags in a detection zone. The system includes an electronic tag detection system having first and second field generators, each having a respective antenna for generating an electromagnetic field in a detection zone defined between the antennas. Additionally, at least one of the field generators can be responsive to a presence of at least two electronically detectable tags in the detection zone, for varying an intensity of at least one of the electromagnetic fields.
Abstract: Conventional EAS systems, such as ULTRA*MAX, use noncoherent detection and a highly nonlinear post detection combining algorithm. It is well known that using the phase information that is present in the received signal has advantages in detection performance. This is difficult to do in conventional ULTRA*MAX receiver because of the combination of a narrow signal bandwidth and short receive window duration. A method to incorporate signal phase into the detector by differential coherent combining is provided, which significantly improves processing gain that was not previously obtainable.
Abstract: An integrated data reader and electronic article surveillance (EAS) system, and methods of operation. In one configuration, a data reader such as a bar code scanner is equipped with an EAS deactivation module disposed behind the scanner surface preferably downstream and/or upstream of the scanner window. The system may be configured such that the EAS deactivation module is interchangeable from the right side of the scanner housing (which is preferred for left-to-right scanning motion) to the left side of the scanner housing (which is preferred for right-to-left scanning motion). In other configurations, the deactivation module may be disposed in the housing adjacent to the window and oriented longitudinally and parallel to the sweep direction of the item. The EAS deactivation modules have various configurations such as simple planar coils, a magnetically active core with coil windings, or two part L-shape construction.
Abstract: A method for holding an object of interest in a field of view of a movable video camera, the object of interest being selected from a plurality of moving objects detected in the field of view, is taught. An indication of the object of interest is received and is used to predict a future position thereof. Movement commands for the camera are created based on the future position of the object of interest such that the object of interest remains in the field of view of the camera.
Abstract: An electronic key capable of reinitializing or resetting a security disabled electronic article surveillance (EAS) device is provided. The electronic key can be a secure, portable, and battery powered for initializing a secured EAS system's security protocol to factory default state, or to another preselected state. The key has its own set of security protocols to prevent unauthorized use and can easily be reprogrammed for a wide variety of other functions including, but not limited to, firmware upgrading, diagnostic testing, and the like. The key can be connected to the programming port of an EAS device and perform a preset reprogramming operation, resetting activated security features. The key could be purchased for customer use, and would be secured by preselecting the total number of uses, such as one use. The one-time use would begin once the key is activated. Activation of the key is also uniquely controlled to prevent its misuse.
Type:
Grant
Filed:
September 6, 2002
Date of Patent:
March 8, 2005
Assignee:
Sensormatic Electronics Corporation
Inventors:
Rich Labit, Steven R. Maitin, Carl A. Brooks, Larry Canipe
Abstract: Automatic tuning of an EAS antenna pedestal without the use of special tools or advanced training is provided. The capacitance of the antenna circuit is adjusted to tune the resonant frequency to the desired frequency. Measurement of the current level is used to validate that the antenna is resonant at the desired frequency. If the current level indicates that the antenna is not resonant at the specified frequency, LEDs located on a capacitor tuning board light to indicate where jumpers should be placed to add or remove capacitance from the circuit. Alternately, the capacitance values can be electronically added or removed from the circuit.
Type:
Grant
Filed:
March 26, 2002
Date of Patent:
March 1, 2005
Assignee:
Sensormatic Electronics Corporation
Inventors:
Steven Embling, Michael A. Zampini, William Jeffreys, Thomas Frederick, Ronald Alterio, Fadi E. Ayoub