Patents Assigned to Seoul Opto Device Co., Ltd.
  • Patent number: 8791483
    Abstract: A high-efficiency light emitting diode including: a semiconductor stack positioned on a support substrate, including a p-type compound semiconductor layer, an active layer, and an n-type compound semiconductor layer; an insulating layer disposed in an opening that divides the p-type compound semiconductor layer and active layer; a transparent electrode layer disposed on the insulating layer and the p-type compound semiconductor layer; a reflective insulating layer covering the transparent electrode layer, to reflect light from the active layer away from the support substrate; a p-electrode covering the reflective insulating layer; and an n-electrode is formed on top of the n-type compound semiconductor layer. The p-electrode is electrically connected to the transparent electrode layer through the insulating layer.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: July 29, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Kyung Hee Ye, Chang Youn Kim, Jin Cheol Shin, Joon Hee Lee, Jong Kyun You, Hong Chol Lim
  • Patent number: 8742449
    Abstract: Exemplary embodiments of the present invention relate to a including a substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad arranged on the second conductive type semiconductor layer, an insulation layer disposed between the second conductive type semiconductor layer and the second electrode pad, and at least one upper extension electrically connected to the second electrode pad, the at least one upper extension being electrically connected to the second conductive type semiconductor layer.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: June 3, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Won Cheol Seo, Dae Sung Cho, Kyung Hee Ye, Kyoung Wan Kim, Yeo Jin Yoon
  • Publication number: 20140145633
    Abstract: A Light Emitting Diode (LED) package and a method of manufacturing the same. The LED package includes a substrate. The substrate defines therein a cavity having a tapered shape, a stepped portion formed on the upper end of the cavity, and a through hole formed in the bottom of the cavity. A conductive film fills the through-hole and is formed on the bottom and the side surfaces of the cavity. An LED has a fluorescent layer thereon, and is flip-chip bonded onto the conductive film. An encapsulant encapsulates the cavity. A Zener diode or a rectifier is provided on the silicon substrate.
    Type: Application
    Filed: December 3, 2010
    Publication date: May 29, 2014
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Won Cheol Seo, Yeo Jin Yoon
  • Patent number: 8735185
    Abstract: The present invention relates to a method of fabricating a patterned substrate for fabricating a light emitting diode (LED), the method including forming an aluminum layer on a substrate, forming an anodic aluminum oxide (AAO) layer having a large number of holes formed therein by performing an anodizing treatment of the aluminum layer, partially etching a surface of the substrate using the aluminum layer with the large number of the holes as a shadow mask, thereby forming patterns, and removing the aluminum layer from the substrate.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: May 27, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Yeo Jin Yoon, Chang Yeon Kim
  • Patent number: 8716946
    Abstract: Disclosed is an improved light-emitting device for an AC power operation. A conventional light emitting device employs an AC light-emitting diode having arrays of light emitting cells connected in reverse parallel. The arrays in the prior art alternately repeat on/off in response to a phase change of an AC power source, resulting in short light emission time during a ½ cycle and the occurrence of a flicker effect. An AC light-emitting device according to the present invention employs a variety of means by which light emission time is prolonged during a ½ cycle in response to a phase change of an AC power source and a flicker effect can be reduced. For example, the means may be switching blocks respectively connected to nodes between the light emitting cells, switching blocks connected to a plurality of arrays, or a delay phosphor.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: May 6, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Chung Hoon Lee, James S. Speck, Hong San Kim, Jae Jo Kim, Sung Han Kim, Jae Ho Lee
  • Patent number: 8716727
    Abstract: Disclosed is an AC light emitting device having photonic crystal structures and a method of fabricating the same. The light emitting device includes a plurality of light emitting cells and metallic wirings electrically connecting the light emitting cells with one another. Further, each of the light emitting cells includes a first conductive type semiconductor layer, a second conductive type semiconductor layer disposed on one region of the first conductive type semiconductor layer, and an active layer interposed between the first and second conductive type semiconductor layers. In addition, a photonic crystal structure is formed in the second conductive type semiconductor layer. The photonic crystal structure prevents light emitted from the active layer from laterally propagating by means of a periodic array, such that light extraction efficiency of the light emitting device can be improved.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: May 6, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Jae Ho Lee, Yeo Jin Yoon, Eu Jin Hwang, Jong Kyu Kim, Jun Hee Lee
  • Patent number: 8716048
    Abstract: Disclosed herein is a light emitting device. The light emitting device includes an n-type nitride semiconductor layer; an active layer on the n-type semiconductor layer, an AlN/GaN layer of a super lattice structure formed by alternately growing an AlN layer and a GaN layer on the active layer, and a p-type nitride semiconductor layer on the AlN/GaN layer of the super lattice structure. At least one of the AlN layer and the GaN layer is doped with a p-type dopant. A method for manufacturing the light emitting device is also provided.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: May 6, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Gyu Beom Kim, Sang Joon Lee, Chang Suk Han, Kwang Choong Kim
  • Patent number: 8716046
    Abstract: Disclosed herein is a light emitting device. The light emitting device includes an n-type nitride semiconductor layer; an active layer on the n-type semiconductor layer, an AlN/GaN layer of a super lattice structure formed by alternately growing an AlN layer and a GaN layer on the active layer, and a p-type nitride semiconductor layer on the AlN/GaN layer of the super lattice structure. At least one of the AlN layer and the GaN layer is doped with a p-type dopant. A method for manufacturing the light emitting device is also provided.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 6, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Gyu Beom Kim, Sang Joon Lee, Chang Suk Han, Kwang Choong Kim
  • Patent number: 8704246
    Abstract: The present invention relates to a light emitting device. The light emitting device comprises a substrate, an N-type semiconductor layer formed on the substrate, and a P-type semiconductor layer formed on the N-type semiconductor layer, wherein a side surface including the N-type or P-type semiconductor layer has a slope of 20 to 80° from a horizontal plane. Further, a light emitting device comprises a substrate formed with a plurality of light emitting cells each including an N-type semiconductor layer and a P-type semiconductor layer formed on the N-type semiconductor layer, wherein the N-type semiconductor layer of one light emitting cell and the P-type semiconductor layer of another adjacent light emitting cell are connected to each other, and a side surface including at least the P-type semiconductor layer of the light emitting cell has a slope of 20 to 80° from a horizontal plane.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: April 22, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Jong Lam Lee, Jae Ho Lee, Yeo Jin Yoon, Eu Jin Hwang, Dae Won Kim
  • Patent number: 8697551
    Abstract: Embodiments of the invention provide a crystalline aluminum carbide thin film, a semiconductor substrate having the crystalline aluminum carbide thin film formed thereon, and a method of fabricating the same. Further, the method of fabricating the AlC thin film includes supplying a carbon containing gas and an aluminum containing gas to a furnace, to growing AlC crystals on a substrate.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: April 15, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventor: Shiro Sakai
  • Publication number: 20140091338
    Abstract: Exemplary embodiments of the present invention relate to light emitting diodes including a plurality of light emitting cells on a substrate to be suitable for AC driving. The light emitting diode includes a substrate and a plurality of light emitting cell formed on the substrate. Each light emitting cell includes a first region at a boundary of the light emitting cell and a second region opposite to the first region. A first electrode pad is formed in the first region of the light emitting cell. A second electrode pad having a linear shape is disposed to face the first electrode pad while regionally defining a peripheral region together with the boundary of the second region. A wire connects the first electrode pad to the second electrode pad between two adjacent light emitting cells.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 3, 2014
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Jong Kyu KIM, So Ra Lee, Ho Jun Suk, Jin Cheol Shin
  • Publication number: 20140087502
    Abstract: Exemplary embodiments of the present invention disclose a light emitting diode chip including a substrate having a first surface and a second surface, a light emitting structure arranged on the first surface of the substrate and including an active layer arranged between a first conductive-type semiconductor layer and a second conductive-type semiconductor layer, a distributed Bragg reflector arranged on the second surface of the substrate, the distributed Bragg reflector to reflect light emitted from the light emitting structure, and a metal layer arranged on the distributed Bragg reflector, wherein the distributed Bragg reflector has a reflectivity of at least 90% for light of a first wavelength in a blue wavelength range, light of a second wavelength in a green wavelength range, and light of a third wavelength in a red wavelength range.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 27, 2014
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Sum Geun LEE, Sang Ki Jin, Jin Cheol Shin, Jong Kyu Kim, So Ra Lee
  • Patent number: 8680559
    Abstract: An exemplary embodiment of the present invention discloses a light emitting diode including a substrate having a first edge and a second edge opposite to each other, a light emitting structure disposed on the substrate, the light emitting structure including a first semiconductor layer and a second semiconductor layer, a plurality of first electrode pads arranged on an upper surface of the first semiconductor layer, the first electrode pads arranged in a vicinity of the first edge, a plurality of second electrode pads arranged on the second semiconductor layer, the second electrode pads arranged in a vicinity of the second edge, a plurality of first extensions, each first extension extending from a first electrode pad, and a plurality of second extensions, each second extension extending from a second electrode pad.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: March 25, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Kyoung Wan Kim, Soo Young Moon, Kyu Ho Lee, Yeo Jin Yoon, Jeong Hee Yang, Won Cheol Seo
  • Publication number: 20140080239
    Abstract: Disclosed herein are a patterned substrate for a light emitting diode and a light emitting diode employing the patterned substrate. The substrate has top and bottom surfaces. Protrusion patterns are arranged on the top surface of the substrate. Furthermore, recessed regions surround the protrusion patterns. The recessed regions have irregular bottoms. Thus, the protrusion patterns and the recessed regions can prevent light emitted from a light emitting diode from being lost due to the total reflection to thereby improve light extraction efficiency.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 20, 2014
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Yeo Jin YOON, Won Cheol Seo
  • Publication number: 20140073120
    Abstract: Exemplary embodiments of the present invention disclose a method of fabricating a gallium nitride (GaN) based semiconductor device. The method includes growing GaN based semiconductor layers on a first surface of a GaN substrate to form a semiconductor stack, and separating at least a first portion of the GaN substrate from the semiconductor stack using a wire cutting technique.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 13, 2014
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Jong Kyun YOU, Chang Yeon Kim, Da Hye Kim, Tae Hyuk Im, Tae Gyun Kim, Young Wug Kim
  • Publication number: 20140061709
    Abstract: Disclosed are a light emitting diode (LED) package and a method of fabricating the same. The LED package includes a first substrate, a semiconductor stack disposed on a front surface of the first substrate, a second substrate including a first lead electrode and a second lead electrode, a plurality of connectors electrically connecting the semiconductor stack to the first and second lead electrodes, and a wavelength converter covering a rear surface of the first substrate. The semiconductor stack includes a first semiconductor layer, a second semiconductor layer, and an active layer disposed between the first semiconductor layer and the second semiconductor layer.
    Type: Application
    Filed: November 7, 2013
    Publication date: March 6, 2014
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Daewoong SUH, Chung Hoon LEE
  • Patent number: 8664693
    Abstract: The present invention relates to a light emitting diode having an AlxGa1-xN buffer layer and a method of fabricating the same, and more particularly, to a light emitting diode having an AlxGa1-xN buffer layer, wherein between a substrate and a GaN-based semiconductor layer, the Al x Ga 1-x N (O?x?1) buffer layer having the composition ratio x of Al decreasing from the substrate to the GaN-based semiconductor layer is interposed to reduce lattice mismatch between the substrate and the GaN-based semiconductor layer, and a method of fabricating the same. To this end, the present invention provides a light emitting diode comprising a substrate; a first conductive semiconductor layer positioned on the substrate; and an AlxGa1-xN (O?x?1) buffer layer interposed between the substrate and the first conductive semiconductor layer and having a composition ratio x of Al decreasing from the substrate to the first conductive semiconductor layer.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: March 4, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventor: Ki Bum Nam
  • Patent number: 8664638
    Abstract: Disclosed herein are gallium nitride based light emitting diodes having interlayers with high dislocation density and a method of fabricating the same. The light emitting diode includes: a substrate; a buffer layer disposed on the substrate; an n-type contact layer disposed on the buffer; a p-type contact layer disposed on the n-type contact layer; an active layer interposed between the n-type contact layer and the p-type contact layer; a first lower semiconductor layer interposed between the buffer layer and the n-type contact layer; and a first interlayer interposed between the first lower semiconductor layer and the n-type contact layer, wherein the first interlayer has lower dislocation density than the buffer layer and higher dislocation density than the first lower semiconductor layer. This way, the interlayers with higher dislocation density prevent dislocations formed within the first lower semiconductor layer from being transferred to the n-type contact layer.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: March 4, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Hong Jae Yoo, Kyung Hee Ye
  • Patent number: 8648380
    Abstract: The present invention relates to a light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same. Nitride semiconductor layers are disposed on a Gallium Nitride substrate having an upper surface. The upper surface is a non-polar or semi-polar crystal and forms an intersection angle with respect to a c-plane. The nitride semiconductor layers may be patterned to form light emitting cells separated from one another. When patterning the light emitting cells, the substrate may be partially removed in separation regions between the light emitting cells to form recess regions. The recess regions are filled with an insulating layer, and the substrate is at least partially removed by using the insulating layer.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: February 11, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Kwang Choong Kim, Won Cheol Seol, Dae Won Kim, Dae Sung Kal, Kyung Hee Ye
  • Patent number: 8648369
    Abstract: Disclosed are a light emitting device and a method of fabricating the same. The light emitting device comprises a substrate. A plurality of light emitting cells are disposed on top of the substrate to be spaced apart from one another. Each of the light emitting cells comprises a first upper semiconductor layer, an active layer, and a second lower semiconductor layer. Reflective metal layers are positioned between the substrate and the light emitting cells. The reflective metal layers are prevented from being exposed to the outside.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: February 11, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Won Cheol Seo, Joon Hee Lee, Jong Kyun You, Chang Youn Kim, Jin Cheul Shin, Hwa Mok Kim, Jang Woo Lee, Yeo Jin Yoon, Jong Kyu Kim