Patents Assigned to Sercel-GRC Corporation
  • Patent number: 9759837
    Abstract: This invention relates to a data communication system/method for use in a downhole application wherein electrical energy is supplied over a multiple-conductor power cable to a motor assembly of a downhole tool such as an electric submersible pump. A power leg coupling interfaces a surface controller of a downhole instrument to the conductors of the tool's power cable. Uplink communication of telemetry data occurs via current modulation generated by the downhole instrument and interpreted by a surface controller. Downlink communication of downhole instrument data occurs over a different communication scheme supported by the downhole and surface controllers. Downlink communication scheme provides a supply of power to the downhole instrument. Protection of downhole electronics and continuity of communication is ensured in the event of a ground fault on the power cable. Both downlink and uplink communication frequencies are adaptive based on frequencies and voltages present on the power cable.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: September 12, 2017
    Assignee: SERCEL-GRC CORPORATION
    Inventors: Guillaume Grente, Anthony Thornberry, David Funkhouser, Bryon Western
  • Patent number: 9506340
    Abstract: A system and method of monitoring a pressure, temperature, and/or vibration of a hostile environment without requiring the use of active electronics or an oscillator circuit in that environment. The system and method interrogate a resonant pressure sensor and a resonant or passive temperature sensor connected to a transmission line and located at least 100 feet (30.48 m) away from a network analyzer. The system and method use the reflected frequencies from the sensors to determine the pressure, temperature, and/or vibration. If the sensors are networked by the transmission line or a network filter, the reflected portion can include the reflected transmission energy. The applied signal and reflected portion travel along the transmission line, which is preferably impedance matched to that of the system. If a multi-conductor cable is used, the effects of the cable's length and temperature are compensated for via a system calibration when in field use.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 29, 2016
    Assignee: Sercel-GRC Corporation
    Inventors: Goutham R. Kirikera, William M. Patton, Suzanne M. Behr, Tracy Sawyer, Anthony Thornberry
  • Publication number: 20150191981
    Abstract: A mount for use with a downhole tool such as, but not limited to, an electrical submersible pump (“ESP”) gauge, includes a mounting means that does not use a fixed- or spring-connection between it and the outer housing of the sensitive assembly but rather makes use of a sliding joint. One end of the sliding joint is in communication with the sensitive assembly of the downhole tool and the other end of the sliding joint is in communication with another component of the downhole tool. The sliding joint is arranged relative to the sensitive assembly so that a radial movement of the sliding joint is restricted and an axial movement of the sliding joint is permitted. When in use, the sliding joint isolates the sensitive assembly from an axial load, thermal stress, or both axial load and thermal stress.
    Type: Application
    Filed: July 18, 2013
    Publication date: July 9, 2015
    Applicant: Sercel-GRC Corporation
    Inventors: Josiah Morgan, Brad Holliday
  • Publication number: 20140311235
    Abstract: A system and method of monitoring a pressure, temperature, and/or vibration of a hostile environment without requiring the use of active electronics or an oscillator circuit in that environment. The system and method interrogate a resonant pressure sensor and a resonant or passive temperature sensor connected to a transmission line and located at least 100 feet (30.48 m) away from a network analyzer. The system and method use the reflected frequencies from the sensors to determine the pressure, temperature, and/or vibration. If the sensors are networked by the transmission line or a network filter, the reflected portion can include the reflected transmission energy. The applied signal and reflected portion travel along the transmission line, which is preferably impedance matched to that of the system. If a multi-conductor cable is used, the effects of the cable's length and temperature are compensated for via a system calibration when in field use.
    Type: Application
    Filed: March 13, 2014
    Publication date: October 23, 2014
    Applicant: Sercel-GRC Corporation
    Inventors: Goutham R. Kirikera, William M. Patton, Suzanne M. Behr, Tracy Sawyer, Anthony Thornberry