Patents Assigned to Shanghai Institute for Biochemistry, Chinese Academy of Sciences
  • Patent number: 6682930
    Abstract: A type of new triplex forming oligonucleotide (TFO) which can form triplex DNA when bound to two similar fragments of homopolypurine/homopolypyrimidine sequences. TFOs were designed according to the above structure to bind the DR region and pre-S gene promoter region of HBV, respectively. The 3′ end of the TFOs can be monophosphorylated or otherwise chemically modified to increase their stability. Cellular experiments prove that these TFOs can be used as drugs to inhibit HBV and treat hepatitis B. TFO and anti-sense oligonucleotide sequences from the DR or pre-S promoter region of HBV can together bind to target RNA sequences and form a (DNA)2:RNA hetero-triplex structure that results in the more efficient inhibition of HBV.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: January 27, 2004
    Assignee: Shanghai Institute of Biochemistry, Chinese Academy of Sciences
    Inventor: Changde Lu
  • Patent number: 6165765
    Abstract: The invention relates to genetical modification of DNA polymerase to reduce its innate selective sequence-related discrimination against incorporation of fluorescent dye-labeled ddCTP and ddATP in the enzymatic reaction for preparation of samples for automated florescent dye-labeled terminator DNA sequencing. The modified DNA polymerases are more resistant to heat inactivation and are more effective in dideoxynucleotide incorporation than current DNA polymerases.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: December 26, 2000
    Assignee: Shanghai Institute of Biochemistry, Chinese Academy of Sciences
    Inventors: GuoFan Hong, Wei-hua Huang
  • Patent number: 5834253
    Abstract: The invention relates to DNA polymerases which are capable of proofreading 3'-5' exonuclease activity during DNA sequencing of a DNA strand, such that the DNA polymerase functions to excise mismatched nucleotides from the 3' terminus of the DNA strand at a faster rate than the rate at which the DNA polymerase functions to remove nucleotides matched correctly with the nucleotides of the template, and which DNA polymerase does not exhibit 5'-3' exonuclease activity. The invention also relates to isolated and cloned DNA sequences derived from the Bacillus stearothermophilus thermostable DNA polymerase, as well as the expressed polymerase itself.
    Type: Grant
    Filed: May 3, 1996
    Date of Patent: November 10, 1998
    Assignee: Shanghai Institute of Biochemistry, Chinese Academy of Sciences
    Inventors: Guo Fan Hong, Wei-hua Huang, Feng Zhai, deceased
  • Patent number: 5747298
    Abstract: The invention relates to a thermostable Bacillus stearothermophilus DNA polymerase which is capable of proofreading 3'-5' exonuclease activity during DNA sequencing of a DNA strand, such that the DNA polymerase functions to excise mismatched nucleotides from the 3' terminus of the DNA strand at a faster rate than the rate at which the DNA polymerase functions to remove nucleotides matched correctly with the nucleotides of the template, and which DNA polymerase does not exhibit 5'-3' exonuclease activity. The invention also relates to strains of Bacillus stearothermophilus capable of producing the thermostable DNA polymerase.
    Type: Grant
    Filed: October 18, 1995
    Date of Patent: May 5, 1998
    Assignee: Shanghai Institute for Biochemistry, Chinese Academy of Sciences
    Inventors: Guo Fan Hong, Feng Zhai, deceased
  • Patent number: 5077213
    Abstract: A recombinant vaccinia virus, effective in combatting hepatitis B infections in humans, is provided. The virus has incorporated therein the entire HBsAg gene, and is capable of expressing in and secreting from animal (including human) cells, in particulate form, all three of the constituent protein epitopes S, preS2 and preS1 constituting the proteinaceous surface antigen of hepatitis B virus. The recombinant vaccinia virus is prepared by recombination of a selected vaccinia virus strain of very low toxicity towards mammals with an expression plasmid containing the HBsAg sequence and the promoter sequence thereof in operative registry therewith, this sequence being provided at a location interposed within a gene sequence common to the expression plasmid and the vaccinia viral genome. This recombinant virus can be used as a novel live vaccine of low toxicity and also as a system for the production of secretable HBsAg particles with all of the three components, which can be applied as a novel sub-unit vaccine.
    Type: Grant
    Filed: November 10, 1988
    Date of Patent: December 31, 1991
    Assignee: Shanghai Institute of Biochemistry, Chinese Academy of Sciences
    Inventors: Zai-Ping Li, Yuan Wang