Abstract: A machining system is described having independently movable cutting instruments configured to simultaneously generate different parts. The cutting instruments are capable of independent motion along a Z-axis and are mounted on a common beam that traverses the parts in an X, Y plane. Merge software modules merge a number of part programs into a single master program. A control unit interprets the master program and controls the machining system to generate the parts. The software modules generate the master program such that all of the Z-axis move commands within the part programs are sequenced along a single X, Y traverse path based on a defined cutting strategy and cutting direction. In this manner, the machining system simultaneously produces a number of different parts.
Abstract: A machining system is described having independently movable cutting instruments configured to simultaneously generate different parts. The cutting instruments are capable of independent motion along a Z-axis and are mounted on a common beam that traverses the parts in an X, Y plane. Merge software modules merge a number of part programs into a single master program. A control unit interprets the master program and controls the machining system to generate the parts. The software modules generate the master program such that all of the Z-axis move commands within the part programs are sequenced along a single X, Y traverse path based on a defined cutting strategy and cutting direction. In this manner, the machining system simultaneously produces a number of different parts.