Abstract: A personal groomer includes a hand-holdable housing within which is disposed a battery operated motor coupled to a cutting head assembly that protrudes at least partially from a distal end of the housing. An impeller fin assembly is attached to a lower portion of the cutting head assembly for rotation therewith when the motor is energized. Preferably the lower portion of the cutting head assembly and the impeller fin assembly are surrounded by a thimble-shaped member defining sidewall vents and having an opening in its upper surface, through which a distal portion of the cutting head assembly protrudes. A light source is mounted in the housing so as to focus light on hairs to be cut with the groomer. The groomer is cleaned by submerging the distal end of the housing assembly in water and energizing the motor. The resultant impeller fin rotation draws water into the cutting head assembly, and expels the water along with cut hairs and any other debris out the vents in the thimble-shaped member.
Type:
Grant
Filed:
October 1, 1998
Date of Patent:
May 30, 2000
Assignee:
Sharper Image Corporation
Inventors:
Charles E. Taylor, Richard J. Thalheimer
Abstract: A hair brush includes a self-contained ion generator that subjects the hair and scalp being brushed to an outflow of ionized air containing safe amounts of ozone. The ion generator includes a high voltage pulse generator whose output pulses are coupled between first and second electrode arrays. Preferably the first array comprises at least one metal pin spaced coaxially-apart from a metal ring-like structure. Alternatively, the first array may comprise one or more wire electrodes spaced staggeringly apart from a second array comprising hollow "U"-shaped electrodes. Preferably a ratio between effective area of an electrode in the second array compared to effective area of an electrode in the first array exceeds about 15:1 and preferably is about 20:1. An electric field produced by the high voltage pulses between the arrays produces an electrostatic flow of ionized air containing safe amounts of ozone.
Abstract: A preferably self-contained food conservator system includes a vacuum compartment appropriate for storing baked goods, in which a negative pressure of about 10" Hg in maintained, preferably at about 60% relative humidity. The environment of the compartment preferably is feed-back-controlled by a microprocessor control. The microprocessor preferably can control vacuum, relative humidity, temperature, the amount of ozone introduced into the compartment to retard bacterial growth, as well as outgassing time cycles. A pushbutton type menu allows a user to input data used to control the microprocessor, and permit optimization of the compartment environment for the particular foodstuffs presently being stored.
Type:
Grant
Filed:
May 1, 1998
Date of Patent:
September 7, 1999
Assignee:
Sharper Image Corp.
Inventors:
Edward C. McKinney, Charles E. Taylor, Richard J. Thalheimer
Abstract: A lost article detector unit includes a microprocessor programmed to execute adaptive actuation signal recognition that discerns desired activation sounds from noise. Preferably the desired activation sounds include a sequence of four adjacent spaced-apart hand claps made by the same user. A transducer provides amplified sound signals to the microprocessor, which then analyzes and stores pattern information associated with the first clap-pair. Signals from a second clap-pair are then analyzed and compared with stored pattern information from the first clap-pair, using the algorithm. The adaptive use of such pattern information permits imposing timing tolerances that are sufficiently tight to reduce false triggering, without requiring the user to memorize a rigid sequence pattern of clapping. Upon microprocessor-recognition of desired activation sounds, the microprocessor causes the transducer to provide a locating signal that may be visual and/or audible.