Abstract: An acoustic underwater navigation system is disclosed. For instance, an underwater receiver determines its position using signals broadcast from an array of acoustic transmitters located near the surface. The position of the array is measured using global positioning system (GPS) technology and the transmitters collectively produce an acoustic signal in which the position and attitude of the array and the GPS time of transmission are encoded. An underwater receiver which is synchronized with the GPS time uses the transmitted position and attitude of the array and the transmission time information to calculate its position.
Abstract: An acoustic underwater navigation system is disclosed. For instance, an underwater receiver determines its position using signals broadcast from an array of acoustic transmitters located near the surface. The position of the array is measured using global positioning system (GPS) technology and the transmitters collectively produce an acoustic signal in which the position and attitude of the array and the GPS time of transmission are encoded. An underwater receiver which is synchronized with the GPS time uses the transmitted position and attitude of the array and the transmission time information to calculate its position.
Abstract: An acoustic underwater navigation system is disclosed. For instance, an underwater receiver determines its position using signals broadcast from an array of acoustic transmitters located near the surface. The position of the array is measured using global positioning system (GPS) technology and the transmitters collectively produce an acoustic signal in which the position and attitude of the array and the GPS time of transmission are encoded. An underwater receiver which is synchronized with the GPS time uses the transmitted position and attitude of the array and the transmission time information to calculate its position.
Abstract: An acoustic underwater navigation system is disclosed. For instance, an underwater receiver determines its position using signals broadcast from an array of acoustic transmitters located near the surface. The position of the array is measured using global positioning system (GPS) technology and the transmitters collectively produce an acoustic signal in which the position and attitude of the array and the GPS time of transmission are encoded. An underwater receiver which is synchronized with the GPS time uses the transmitted position and attitude of the array and the transmission time information to calculate its position.
Abstract: A geometry for a pickup coil assembly that improves the balance of a hysteresis loop tracer is described. First and second balance coils are placed on either side of a pickup coil. The first and second balance coils are wired in series to form a symmetric balance coil that senses the magnetic H field on either side of the pickup coil. The voltage produced by the symmetric balance coil is subtracted from the voltage produced by the pickup coil. This geometry reduces susceptibility to external electromagnetic fields and also reduces susceptibility to changes in the uniformity of the drive field. Mechanical and thermal stability is improved by physically connecting the balance and pickup coils together. Mechanical and thermal stability is further improved by winding the coils on alumina coil forms.