Abstract: Disclosed is a generator device using potential energy, relating to the field of new technologies. The generator device using potential energy includes a ball buoy and connecting rods, the ball buoy includes a casing, flywheels, a transmission gear and generators, the flywheel, the transmission gear and the generators are located inside the casing. A generator gear is provided on a rotary shaft of each of the generators, the transmission gear is provided with external teeth and internal teeth, and the generator gear is engaged with the internal teeth, and the flywheels are engaged with the external teeth. The connecting rods are each connected with one of the flywheels inside the casing through a rotating shaft arranged on the casing, and the flywheels are driven to rotate in one direction by the connecting rods through the rotating shaft.
Type:
Grant
Filed:
July 22, 2021
Date of Patent:
November 22, 2022
Assignee:
Shenzhen Yibo Science and Technology Ltd.
Abstract: The present application provides a display panel, a display module and a display device, the display panel includes a pixel electrode layer, at least one firstshading strip and at least one second shading strip; a pixel electrode layer is divided onto at least four pixel electrode regions by the first shading strip and the second shading strip, a plurality of branch electrodes are formed in the pixel electrode region; the branch electrodes in the two adjacent pixel electrode regions and a center line of the two adjacent pixel electrode regions are symmetrically disposed.
Type:
Grant
Filed:
February 20, 2019
Date of Patent:
November 22, 2022
Assignee:
SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
Abstract: The disclosure discloses a method and device of analysis based on a model, and a computer readable storage medium. The method includes: training various pre-determined models based on a preset number of customer information samples; combining the various trained models into a compound model according to a pre-determined combining rule, and after customer information to be analyzed is received, inputting the customer information to be analyzed into the compound model to output an analysis result. According to the disclosure, by the use of the compound model combined by the various models for analysis and prediction, the advantages of different models can be combined. Compared with a single model for prediction, the compound model effectively improves the accuracy of a prediction result.
Abstract: The invention provides an automated batch sample preparation method for button battery, comprising the following steps: preparing an electrolyte and elements of different specifications, presetting an injection amount of a liquid injection component, scanning and recording the identification information of the elements by a scanning component, grabbing the elements onto a sealing component, injecting the electrolyte into the elements on the sealing component, sealing the elements as a button battery by the sealing component, removing the button battery, then repeat the above steps. The automated batch sample preparation method for button battery provided by the invention has the advantages of high automation degree, simple operation, high-precision assembly and high efficiency. The injection amount can be adjusted and controlled, and button batteries with different specifications can be produced in batch. The information recorded by the scanning component can facilitate the optimization of the process.
Type:
Grant
Filed:
June 9, 2020
Date of Patent:
November 22, 2022
Assignees:
SHENZHEN KEJING STAR TECHNOLOGY COMPANY, MTI CORPORATION
Inventors:
Li Xia, Baofei Lao, Yue Deng, Youxiang Wu
Abstract: Embodiments of this application disclose a voiceprint recognition method performed by a computer. After obtaining a to-be-recognized target voice message, the computer obtains target feature information of the target voice message by using a voice recognition model, the voice recognition model being obtained through training according to a first loss function and a second loss function. Next, the computer determines a voiceprint recognition result according to the target feature information and registration feature information, the registration feature information being obtained from a voice message of a to-be-recognized object using the voiceprint recognition model. The normalized exponential function and the centralization function are used for jointly optimizing the voice recognition model, and can reduce an intra-class variation between depth features from the same speaker.
Type:
Grant
Filed:
October 30, 2020
Date of Patent:
November 22, 2022
Assignee:
TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED
Abstract: Disclosed are a multifunctional stylus and a touch device. The multifunctional stylus includes a main structure, a charging assembly and a stylus tip. The main structure has an accommodating cavity therein, a first end of the main structure has a charging compartment recessed inwards and a charging electrode is disposed in the charging compartment. The charging assembly is located in the accommodating cavity, and the charging assembly is in electrical contact with the charging electrode to provide electrical energy for the charging electrode. The stylus tip is fixedly connected to a second end of the main structure. Both the multifunctional stylus and the touch device provided by the present disclosure have more functions and a higher utilization rate.
Abstract: The present invention provides an image sensing system (10), including a first pixel circuit (120), wherein the first pixel circuit includes a photosensitive device (PD); a first transmission gate (TG1), under the control of a first transmission signal and conducted during a first conduction time interval; and a collection gate (CG), coupled between the photosensitive device and the transmission gate and configured to receive a collecting signal (CX); and a control unit (14), configured to generate the collecting signal to the collection gate, wherein the collecting signal has a non-fixed voltage value.
Abstract: An integrated control LED display system, comprising a number of module screens (100) which are assembled together to form a large display screen, each of the module screens (100) comprises several unit screens (200), a splicing frame (300) and a control box (400), several unit screens (200) are assembled in the splicing frame (300) to form a said module screen (100), the control box (400) is arranged on the back of the module screen (100), and the control box (400) can simultaneously control the work mode of the unit screens (200).
Abstract: The fingerprint-based login method includes: waking up an operating system of a terminal device where a fingerprint sensor is disposed based on a detected non-press-type touch operation against the fingerprint sensor; controlling the fingerprint sensor to acquire fingerprint data based on a fingerprint data acquisition instruction sent by the waken-up operating system; storing the acquired fingerprint data to a designated security region in the terminal device by the waken-up operating system; and judging whether the fingerprint data stored in the designated security region matches fingerprint password data by the waken-up operating system upon detecting a press-type touch operation against the fingerprint sensor, such that a login operation is performed in the operating system if the stored fingerprint data matches the fingerprint password data, the problem that the fingerprint modules using the conventional MCUs failing to satisfy the requirements may not implement the system login function is effectively s