Patents Assigned to Shoei Chemical Inc.
-
Patent number: 12100530Abstract: The present invention provides a silver paste, containing at least a silver powder, a binder resin, and an organic solvent, in which a content of the silver powder based on the silver paste is 80.00 to 97.00% by mass, D10 is 1.00 to 3.00 ?m and D50 is 3.00 to 7.00 ?m, where D10 and D50 respectively represent a 10% value and a 50% value of a volume-based cumulative fraction obtained by laser diffraction particle size distribution measurement of the silver powder, the silver powder has a specific surface area of 0.10 to 0.30 m2/g, the silver powder has a copper content of 10 to 5000 ppm by mass, a content of the binder resin based on the silver powder is 0.430 to 0.750% by mass, and the silver paste has a dry film density of 7.50 g/cm3 or more.Type: GrantFiled: November 28, 2019Date of Patent: September 24, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Kousuke Nishimura, Naoto Shindo, Hiroshi Mashima
-
Patent number: 12089437Abstract: Embodiments of a flexible electroluminescent (FEE) device are described. An FEE device includes a device stack with a quantum dot (QD) film configured to generate a first light having a first peak wavelength and a flexible substrate configured to support the device stack and emit a first portion of the first light. The FEE device further includes an encapsulation layer disposed on the device stack and an outcoupling layer disposed on the flexible substrate. The encapsulation layer can be configured to provide mechanical and environmental protection to the FEE device from moisture or oxygen. The outcoupling layer can be configured to prevent total internal reflection of a second portion of the first light within the flexible substrate and extract the second portion from the flexible substrate.Type: GrantFiled: April 17, 2020Date of Patent: September 10, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ruiqing Ma, Jason Hartlove, Charles Hotz
-
Patent number: 12054657Abstract: Provided is a semiconductor nanoparticle complex in which a ligand is coordinated to a surface of a semiconductor nanoparticle. The semiconductor nanoparticle is a core-shell type semiconductor nanoparticle including a core containing In and P and one or more layers of shells. The semiconductor nanoparticle further includes halogen and the molar ratio of halogen to In is 0.80 to 15.00 in terms of atoms. The ligand includes one or more kinds of mercapto fatty acid esters represented by the following general formula: HS—R1—COO—R2. The mercapto fatty acid ester has an SP value of 9.20 or more. The mercapto fatty acid ester has a molecular weight of 700 or less, and the average SP value of the entire ligand is 9.10 to 11.00. The present invention provides a semiconductor nanoparticle complex dispersible at a high mass fraction in a polar dispersion medium while keeping high fluorescence quantum yield.Type: GrantFiled: May 26, 2020Date of Patent: August 6, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Makoto Kido, Takafumi Moriyama, Hirokazu Sasaki
-
Patent number: 12049582Abstract: This disclosure pertains to the field of nanotechnology. The disclosure provides methods of preparing nanostructures using in situ prepared zinc dioleate and/or a metal halide. The nanostructures have high quantum yield, narrow emission peak width, tunable emission wavelength, and colloidal stability. Also provided are nanostructures prepared using the methods. And, nanostructure films and molded articles comprising the nanostructures are also provided.Type: GrantFiled: April 14, 2020Date of Patent: July 30, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Yeewah Annie Chow, Jason Hartlove, Charles Hotz, Chunming Wang, Wenzhou Guo, Ilan Jen-La Plante, Jason Travis Tillman, John J. Curley, Christian Ippen, Alexander Tu, Ke Gong, Minghu Tu
-
Patent number: 12010860Abstract: Embodiments of the present application relate to illumination devices using luminescent nanostructures. An illumination device includes a first conductive layer, a second conductive layer, a hole transport layer, an electron transport layer and a material layer that includes a plurality of luminescent nanostructures. The hole transport layer and the electron transport layer are each disposed between the first conductive layer and the second conductive layer. The material layer is disposed between the hole transport layer and the electron transport layer and includes one or more discontinuities in its thickness such that the hole transport layer and the electron transport layer contact each other at the one or more discontinuities. Resonant energy transfer occurs between the luminescent nanostructures and excitons at the discontinuities.Type: GrantFiled: September 13, 2021Date of Patent: June 11, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Emma Rose Dohner, Yeewah Annie Chow, Wenzhuo Guo, Christian Justus Ippen, Jason Travis Tillman, Jonathan Andrew Truskier
-
Patent number: 12010862Abstract: Embodiments of an electroluminescent device are described. The electroluminescent device includes a substrate, a first electrode disposed on the substrate, an emission layer comprising luminescent nanostructures disposed on the first electrode, a hybrid transport layer disposed on the emission layer, and a second electrode disposed on the hybrid transport layer. The hybrid transport layer includes an organic layer and inorganic nanostructures disposed within the organic layer. The luminescent nanostructures are separated from the inorganic nanostructures by the organic layer.Type: GrantFiled: October 21, 2021Date of Patent: June 11, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Daekyoung Kim, Ruiqing Ma, Emma Dohner, Donald Zehnder
-
Patent number: 11999884Abstract: The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures comprising polythiol ligands with pendant moieties. The polythiol ligand with pendant moieties increase the solubility of the nanostructures in solvents and resins. The present invention also provides nanostructure films comprising the nanostructure compositions and methods of making nanostructure films using the nanostructure compositions.Type: GrantFiled: September 28, 2021Date of Patent: June 4, 2024Assignee: SHOEI CHEMICAL INC.Inventors: David Olmeijer, Ravisubhash Tangirala, Austin Smith
-
Patent number: 11988922Abstract: Embodiments of a display device are described. A display device includes a backlight unit having a light source and a liquid crystal display (LCD) module. The LCD module includes a nanostructure-based color conversion (NS-based CC) layer and a light extraction layer. The NS-based CC layer is configured to receive a primary light, from the light source, having a first peak wavelength and to convert a portion of the primary light to emit a first portion of a secondary light having a second peak wavelength. The second peak wavelength is different from the first peak wavelength. The light extraction layer is optically coupled to the NS-based CC layer and is configured to prevent total internal reflection of a second portion of the secondary light. The light extraction layer has patterned features with one or more dimension in nanometer scale.Type: GrantFiled: May 7, 2020Date of Patent: May 21, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ernest C. Lee, David Olmeijer, Charles Hotz, Ruiqing Ma, Jason Hartlove
-
Patent number: 11985878Abstract: Embodiments of a display device are described. A display device includes first and second sub-pixels. The first sub-pixel includes a first light source having a multi-layer stack and a first substrate configured to support the first light source. The multi-layer stack includes an organic phosphor film or a quantum dot (QD) based phosphor film configured to emit a first light having a first peak wavelength. The first substrate includes a first control circuitry configured to independently control the first light source. The second sub-pixel includes a second light source and a second substrate configured to support the second light source. The second light source has a microLED or a miniLED configured to emit a second light having a second peak wavelength that is different from the first peak wavelength. The second peak wavelength can be in the blue wavelength region of the visible spectrum. The second substrate includes a second control circuitry configured to independently control the second light source.Type: GrantFiled: April 4, 2022Date of Patent: May 14, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Jesse R. Manders, Brian H. Berkeley
-
Patent number: 11970646Abstract: Disclosed are nanostructures comprising Ag, In, Ga, and S and a shell comprising Ag, Ga and S, wherein the nanostructures have a peak wavelength emission of 480-545 nm and wherein at least about 80% of the emission is band-edge emission. Also disclosed are methods of making the nanostructures.Type: GrantFiled: June 18, 2020Date of Patent: April 30, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ashenafi Damtew Mamuye, Christopher Sunderland, Ilan Jen-La Plante, Chunming Wang, John J. Curley, Nahyoung Kim, Ravisubhash Tangirala
-
Patent number: 11926776Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.Type: GrantFiled: June 22, 2022Date of Patent: March 12, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ravisubhash Tangirala, Jay Yamanaga, Wenzhou Guo, Christopher Sunderland, Ashenafi Damtew Mamuye, Chunming Wang, Eunhee Hwang, Nahyoung Kim
-
Patent number: 11897766Abstract: In a method for producing nanoparticles of copper selenide, a flowable copper precursor is formed by combining a copper starting material and a ligand, and a flowable selenium precursor is formed by suspending a selenium starting material in a liquid. Then a flowable copper-selenium mixture including a lower-polarity solvent is formed by combining the flowable copper precursor and the flowable selenium precursor. The flowable copper-selenium mixture is conducted through at least one heating unit, and the nanoparticles of copper selenide are isolated in an oxygen-depleted environment. The isolation includes combining a solution containing the nanoparticles of copper selenide and a deoxygenated, higher-polarity solvent to precipitate the nanoparticles.Type: GrantFiled: November 3, 2022Date of Patent: February 13, 2024Assignee: SHOEI CHEMICAL INC.Inventor: Patrick Haben
-
Patent number: 11886073Abstract: Embodiments of a display device are described. A display device includes a backlight unit having a light source and a liquid crystal display (LCD) module. The light source is configured to emit a primary light having a first peak wavelength. The LCD module includes a first sub-pixel having a phosphor film and a second sub-pixel having a non-phosphor film. The phosphor film is configured to receive a first portion of the primary light and to convert the first portion of the primary light to emit a secondary light having a second peak wavelength that is different from the first peak wavelength. The non-phosphor film is configured to receive a second portion of the primary light and to optically modify the second portion of the primary light to emit an optically modified primary light having a third peak wavelength that is different from the first and second peak wavelengths.Type: GrantFiled: November 21, 2022Date of Patent: January 30, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ernest Chung-Wei Lee, Charles Hotz
-
Patent number: 11824146Abstract: Quantum dots and methods of making quantum dots are described. A method begins with forming quantum dots having a core-shell structure with a plurality of ligands on the shell structure. The method includes exchanging the plurality of ligands with a plurality of second ligands. The plurality of second ligands have a weaker binding affinity to the shell structure than the plurality of first ligands. The plurality of second ligands are then exchanged with hydrolyzed alkoxysilane to form a monolayer of hydrolyzed alkoxysilane on a surface of the shell structure. The method includes forming a barrier layer around the shell structure by using the hydrolyzed alkoxysilane as a nucleation center.Type: GrantFiled: October 27, 2020Date of Patent: November 21, 2023Assignee: SHOEI CHEMICAL INC.Inventors: Shihai Kan, Jay Yamanaga, Charles Hotz, Jason Hartlove, Veeral Hardev, Jian Chen, Christian Ippen, Wenzhou Guo, Robert Wilson
-
Patent number: 11702368Abstract: A dielectric ceramic composition including a first component and a second component. The first component comprises an oxide of Ca of 0.00 mol % to 35.85 mol % an oxide of Sr of 0.00 mol % to 47.12 mol %, an oxide of Ba of 0.00 mol % to 51.22 mol %, an oxide of Ti of 0.00 mol % to 17.36 mol %, an oxide of Zr of 0.00 mol % to 17.36 mol %, an oxide of Sn of 0.00 mol % to 2.60 mol %, an oxide of Nb of 0.00 mol % to 35.32 mol %, an oxide of Ta of 0.00 mol % to 35.32 mol %, and an oxide of V of 0.00 mol % to 2.65 mol %. The second component includes (by mass) at least (a) an oxide of Mn of 0.005% to 3.500% and (b) one or both of an oxide of Cu of 0.080% to 20.000% and an oxide of Ru of 0.300% to 45.000%.Type: GrantFiled: March 15, 2019Date of Patent: July 18, 2023Assignee: SHOEI CHEMICAL INC.Inventors: Takeshi Nomura, Yukari Sasaki
-
Patent number: 11667838Abstract: An object of the present invention is to provide a core/shell type quantum dot material capable of increasing the photoluminescence quantum yield and a method of manufacturing the same. The quantum dot material according to one embodiment of the present invention is a quantum dot material comprising a plurality of nanoscopic core-shell structures, each nanoscopic core-shell structure including a nanocrystalline core including phosphorus and indium, a shell disposed on the nanocrystalline core, and a modifier comprising at least one of chlorine and bromine, wherein the content of chlorine and/or bromine is within a range of 2 to 15 mass % of the quantum dot material.Type: GrantFiled: April 26, 2017Date of Patent: June 6, 2023Assignee: SHOEI CHEMICAL, INC.Inventors: Takafumi Moriyama, Aya Midorikawa
-
Patent number: 11594661Abstract: An object of the present invention is to provide semiconductor nanoparticles having high quantum efficiency and also high weather resistance. Semiconductor nanoparticles according to an embodiment of the present invention are semiconductor nanoparticles including at least, In, P, Zn, Se, S and a halogen, wherein the contents of P, Zn, Se, S and the halogen, in terms of molar ratio with respect to In, are as follows: 0.05 to 0.95 for P, 0.50 to 15.00 for Zn, 0.50 to 5.00 for Se, 0.10 to 15.00 for S, and 0.10 to 1.50 for the halogen.Type: GrantFiled: December 19, 2018Date of Patent: February 28, 2023Assignee: SHOEI CHEMICAL INC.Inventors: Takafumi Moriyama, Ryosuke Motoyoshi
-
Patent number: 11535767Abstract: The present invention provides a silver paste containing at least a silver powder, a binder resin, and an organic solvent, wherein the silver powder contains a first silver powder having a D50 of 3.50 to 7.50 ?m and a second silver powder having a D50 of 0.80 to 2.00 ?m, where D50 represents a 50% value of a volume-based cumulative fraction obtained by laser diffraction particle size distribution measurement; a copper content of the whole silver powder is 10 to 5000 ppm by mass; a copper content of the second silver powder is 80 ppm by mass or more; and the first silver powder contains substantially no copper. The present invention provides a silver paste containing a powder in a high concentration and excellent in printability, and provides a silver conductor film that has a high filling factor, a high film density, high electrical conductivity, and excellent migration resistance.Type: GrantFiled: November 28, 2019Date of Patent: December 27, 2022Assignee: SHOEI CHEMICAL INC.Inventors: Kousuke Nishimura, Naoto Shindo, Hiroshi Mashima, Yuji Akimoto
-
Patent number: 11524923Abstract: Provided is a dielectric ceramic composition including a first component and a second component, wherein the first component comprises an oxide of Ca of 0.00 mol % to 35.85 mol % an oxide of Sr of 0.00 mol % to 47.12 mol %, an oxide of Ba of 0.00 mol % to 51.22 mol %, an oxide of Ti of 0.00 mol % to 17.36 mol %, an oxide of Zr of 0.00 mol % to 17.36 mol %, an oxide of Sn of 0.00 mol % to 2.60 mol %, an oxide of Nb of 0.00 mol % to 35.32 mol %, an oxide of Ta of 0.00 mol % to 35.32 mol %, and an oxide of V of 0.00 mol % to 2.65 mol %, and the second component includes at least (a) an oxide of Mn of 0.005% by mass to 3.500% by mass and (b) an oxide of Cu and/or an oxide of Ru.Type: GrantFiled: March 15, 2019Date of Patent: December 13, 2022Assignee: SHOEI CHEMICAL INC.Inventors: Takeshi Nomura, Yukari Sasaki
-
Patent number: 11517963Abstract: In a method for producing nanoparticles of copper selenide, a flowable copper precursor is formed by combining a copper starting material and a ligand, and a flowable selenium precursor is formed by suspending a selenium starting material in a liquid. Then a flowable copper-selenium mixture including a lower-polarity solvent is formed by combining the flowable copper precursor and the flowable selenium precursor. The flowable copper-selenium mixture is conducted through at least one heating unit, and the nanoparticles of copper selenide are isolated in an oxygen-depleted environment. The isolation includes combining a solution containing the nanoparticles of copper selenide and a deoxygenated, higher-polarity solvent to precipitate the nanoparticles.Type: GrantFiled: September 30, 2020Date of Patent: December 6, 2022Assignee: SHOEI CHEMICAL INC.Inventor: Patrick Haben