Patents Assigned to Shoei Chemical Inc.
-
Patent number: 12258506Abstract: Disclosed are films comprising Ag In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm when excited using a blue light source with a wavelength of about 450 nm.Type: GrantFiled: March 7, 2024Date of Patent: March 25, 2025Assignee: SHOEI CHEMICAL INC.Inventors: Ravisubhash Tangirala, Jay Yamanaga, Wenzhou Guo, Christopher Sunderland, Ashenafi Damtew Mamuye, Chunming Wang, Eunhee Hwang, Nahyoung Kim
-
Patent number: 12205731Abstract: A method for manufacturing an electronic component includes: a preparation step of preparing an electrode-forming body for electronic components; and an electrode forming step of forming an electrode on an outer surface of the electrode-forming body for electronic components, wherein in the electrode forming step, a conductive resin layer is formed on the electrode-forming body for electronic components by using a conductive resin composition containing a metal powder, a resin binder, and an organic solvent, wherein 20.0% by mass or more of the metal powder is a flaky metal powder, and 70.0% by mass or more of the resin binder is a silicone resin. According to the present invention, it is possible to provide a method for manufacturing an electronic component having reduced restrictions on design and manufacturing and high manufacturing efficiency, in addition to high moisture resistance.Type: GrantFiled: July 3, 2023Date of Patent: January 21, 2025Assignee: SHOEI CHEMICAL INC.Inventor: Soichiro Esaki
-
Patent number: 12166159Abstract: A semiconductor nanoparticle aggregate that is an aggregate of core/shell type semiconductor nanoparticles including a core including In and P and a shell having one or more layers, in which a peak wavelength of an emission spectrum of the semiconductor nanoparticle aggregate is from 605 nm to 655 nm and a full width at half maximum of the emission spectrum is 43 nm or less. For each semiconductor nanoparticle, (1) an average value of a full width at half maximum of an emission spectrum is 28 nm or less, (2) a standard deviation of a peak wavelength of the emission spectrum is 10 nm or more and 30 nm or less, and (3) a standard deviation of the full width at half maximum of the emission spectrum is 12 nm or less.Type: GrantFiled: December 4, 2020Date of Patent: December 10, 2024Assignee: Shoei Chemical Inc.Inventors: Naoki Umeda, Makoto Kido, Yuko Mitsuka, Hirokazu Sasaki
-
Patent number: 12163079Abstract: The invention pertains to the field of nanotechnology. The invention provides highly luminescent nanostructures, particularly highly luminescent nanostructures comprising a ZnSe1-xTex core and ZnS and/or ZnSe shell layers. The nanostructures comprising a ZnSe1-xTex core and ZnS and/or ZnSe shell layers display a low full width at half-maximum and a high quantum yield. The invention also provides methods of producing the nanostructures.Type: GrantFiled: October 26, 2022Date of Patent: December 10, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Benjamin Newmeyer, Christian Ippen, Ruiqing Ma
-
Patent number: 12163075Abstract: A semiconductor nanoparticle complex in which two or more ligands including an aliphatic ligand and a polar ligand are coordinated to a surface of a semiconductor nanoparticle, wherein: the ligands are composed of an organic group and a coordinating group; in the aliphatic ligand, the organic group is an aliphatic hydrocarbon group; the polar ligand includes a hydrophilic functional group in the organic group; a mass ratio of the aliphatic ligand to the polar ligand (aliphatic ligand/polar ligand) is 0.05 to 1.00; a ratio ({(XH)/L}×100) of a mass reduction rate of the semiconductor nanoparticle complex in a range of 350° C. or higher and 550° C. or lower in a thermogravimetric analysis (XH) to a mass fraction of all ligands in the semiconductor nanoparticle complex at room temperature (L) is 10 or more and 55 or less.Type: GrantFiled: May 29, 2020Date of Patent: December 10, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Makoto Kido, Takafumi Moriyama, Hirokazu Sasaki, Yuko Mitsuka
-
Patent number: 12161004Abstract: Embodiments of an electroluminescent device are described. The electroluminescent device includes a substrate, a first electrode disposed on the substrate, a first transport layer disposed on the first electrode, an emission layer having luminescent nanostructures disposed on the first transport layer, a second transport layer having an organic layer, and a second electrode disposed on the second transport layer. A first portion of the organic layer is disposed on the emission layer and a second portion of the organic layer is disposed on the first transport layer.Type: GrantFiled: October 21, 2021Date of Patent: December 3, 2024Assignee: Shoei Chemical Inc.Inventors: Daekyoung Kim, Ruiqing Ma
-
Patent number: 12157849Abstract: This disclosure pertains to the field of nanotechnology. The disclosure provides methods of preparing nanostructures using a Group IV metal halide. The nanostructures have high quantum yield, narrow emission peak width, tunable emission wavelength, and colloidal stability. Also provided are nanostructures prepared using the methods. And, nanostructure films and molded articles comprising the nanostructures are also provided.Type: GrantFiled: March 3, 2021Date of Patent: December 3, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Benjamin Newmeyer, Christian Ippen, Jesse Manders, Ruiqing Ma, Dylan Charles Hamilton
-
Patent number: 12146089Abstract: The invention pertains to the field of nanotechnology. The disclosure provides nanostructure compositions comprising (a) at least one organic solvent; (b) at least one population of nanostructures comprising a core and at least one shell, wherein the nanostructures comprise inorganic ligands bound to the surface of the nanostructures; and (c) at least one poly(alkylene oxide) additive. The nanostructure compositions comprising at least one poly(alkylene oxide) additive show improved solubility in organic solvents. And, the nanostructure compositions show increased suitability for use in inkjet printing. The disclosure also provides methods of producing emissive layers using the nanostructure compositions.Type: GrantFiled: December 19, 2022Date of Patent: November 19, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Christian Ippen, Donald Zehnder, Ruiqing Ma
-
Patent number: 12122948Abstract: The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures, an aminosilicone polymer, an organic resin, and a cation. The present invention also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.Type: GrantFiled: February 22, 2023Date of Patent: October 22, 2024Assignee: SHOEI CHEMICAL INC.Inventors: James Kundrat, David Olmeijer
-
Patent number: 12100530Abstract: The present invention provides a silver paste, containing at least a silver powder, a binder resin, and an organic solvent, in which a content of the silver powder based on the silver paste is 80.00 to 97.00% by mass, D10 is 1.00 to 3.00 ?m and D50 is 3.00 to 7.00 ?m, where D10 and D50 respectively represent a 10% value and a 50% value of a volume-based cumulative fraction obtained by laser diffraction particle size distribution measurement of the silver powder, the silver powder has a specific surface area of 0.10 to 0.30 m2/g, the silver powder has a copper content of 10 to 5000 ppm by mass, a content of the binder resin based on the silver powder is 0.430 to 0.750% by mass, and the silver paste has a dry film density of 7.50 g/cm3 or more.Type: GrantFiled: November 28, 2019Date of Patent: September 24, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Kousuke Nishimura, Naoto Shindo, Hiroshi Mashima
-
Patent number: 12089437Abstract: Embodiments of a flexible electroluminescent (FEE) device are described. An FEE device includes a device stack with a quantum dot (QD) film configured to generate a first light having a first peak wavelength and a flexible substrate configured to support the device stack and emit a first portion of the first light. The FEE device further includes an encapsulation layer disposed on the device stack and an outcoupling layer disposed on the flexible substrate. The encapsulation layer can be configured to provide mechanical and environmental protection to the FEE device from moisture or oxygen. The outcoupling layer can be configured to prevent total internal reflection of a second portion of the first light within the flexible substrate and extract the second portion from the flexible substrate.Type: GrantFiled: April 17, 2020Date of Patent: September 10, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ruiqing Ma, Jason Hartlove, Charles Hotz
-
Patent number: 12054657Abstract: Provided is a semiconductor nanoparticle complex in which a ligand is coordinated to a surface of a semiconductor nanoparticle. The semiconductor nanoparticle is a core-shell type semiconductor nanoparticle including a core containing In and P and one or more layers of shells. The semiconductor nanoparticle further includes halogen and the molar ratio of halogen to In is 0.80 to 15.00 in terms of atoms. The ligand includes one or more kinds of mercapto fatty acid esters represented by the following general formula: HS—R1—COO—R2. The mercapto fatty acid ester has an SP value of 9.20 or more. The mercapto fatty acid ester has a molecular weight of 700 or less, and the average SP value of the entire ligand is 9.10 to 11.00. The present invention provides a semiconductor nanoparticle complex dispersible at a high mass fraction in a polar dispersion medium while keeping high fluorescence quantum yield.Type: GrantFiled: May 26, 2020Date of Patent: August 6, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Makoto Kido, Takafumi Moriyama, Hirokazu Sasaki
-
Patent number: 12049582Abstract: This disclosure pertains to the field of nanotechnology. The disclosure provides methods of preparing nanostructures using in situ prepared zinc dioleate and/or a metal halide. The nanostructures have high quantum yield, narrow emission peak width, tunable emission wavelength, and colloidal stability. Also provided are nanostructures prepared using the methods. And, nanostructure films and molded articles comprising the nanostructures are also provided.Type: GrantFiled: April 14, 2020Date of Patent: July 30, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Yeewah Annie Chow, Jason Hartlove, Charles Hotz, Chunming Wang, Wenzhou Guo, Ilan Jen-La Plante, Jason Travis Tillman, John J. Curley, Christian Ippen, Alexander Tu, Ke Gong, Minghu Tu
-
Patent number: 12010862Abstract: Embodiments of an electroluminescent device are described. The electroluminescent device includes a substrate, a first electrode disposed on the substrate, an emission layer comprising luminescent nanostructures disposed on the first electrode, a hybrid transport layer disposed on the emission layer, and a second electrode disposed on the hybrid transport layer. The hybrid transport layer includes an organic layer and inorganic nanostructures disposed within the organic layer. The luminescent nanostructures are separated from the inorganic nanostructures by the organic layer.Type: GrantFiled: October 21, 2021Date of Patent: June 11, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Daekyoung Kim, Ruiqing Ma, Emma Dohner, Donald Zehnder
-
Patent number: 12010860Abstract: Embodiments of the present application relate to illumination devices using luminescent nanostructures. An illumination device includes a first conductive layer, a second conductive layer, a hole transport layer, an electron transport layer and a material layer that includes a plurality of luminescent nanostructures. The hole transport layer and the electron transport layer are each disposed between the first conductive layer and the second conductive layer. The material layer is disposed between the hole transport layer and the electron transport layer and includes one or more discontinuities in its thickness such that the hole transport layer and the electron transport layer contact each other at the one or more discontinuities. Resonant energy transfer occurs between the luminescent nanostructures and excitons at the discontinuities.Type: GrantFiled: September 13, 2021Date of Patent: June 11, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Emma Rose Dohner, Yeewah Annie Chow, Wenzhuo Guo, Christian Justus Ippen, Jason Travis Tillman, Jonathan Andrew Truskier
-
Patent number: 11999884Abstract: The present invention provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise a population of nanostructures comprising polythiol ligands with pendant moieties. The polythiol ligand with pendant moieties increase the solubility of the nanostructures in solvents and resins. The present invention also provides nanostructure films comprising the nanostructure compositions and methods of making nanostructure films using the nanostructure compositions.Type: GrantFiled: September 28, 2021Date of Patent: June 4, 2024Assignee: SHOEI CHEMICAL INC.Inventors: David Olmeijer, Ravisubhash Tangirala, Austin Smith
-
Patent number: 11988922Abstract: Embodiments of a display device are described. A display device includes a backlight unit having a light source and a liquid crystal display (LCD) module. The LCD module includes a nanostructure-based color conversion (NS-based CC) layer and a light extraction layer. The NS-based CC layer is configured to receive a primary light, from the light source, having a first peak wavelength and to convert a portion of the primary light to emit a first portion of a secondary light having a second peak wavelength. The second peak wavelength is different from the first peak wavelength. The light extraction layer is optically coupled to the NS-based CC layer and is configured to prevent total internal reflection of a second portion of the secondary light. The light extraction layer has patterned features with one or more dimension in nanometer scale.Type: GrantFiled: May 7, 2020Date of Patent: May 21, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ernest C. Lee, David Olmeijer, Charles Hotz, Ruiqing Ma, Jason Hartlove
-
Patent number: 11985878Abstract: Embodiments of a display device are described. A display device includes first and second sub-pixels. The first sub-pixel includes a first light source having a multi-layer stack and a first substrate configured to support the first light source. The multi-layer stack includes an organic phosphor film or a quantum dot (QD) based phosphor film configured to emit a first light having a first peak wavelength. The first substrate includes a first control circuitry configured to independently control the first light source. The second sub-pixel includes a second light source and a second substrate configured to support the second light source. The second light source has a microLED or a miniLED configured to emit a second light having a second peak wavelength that is different from the first peak wavelength. The second peak wavelength can be in the blue wavelength region of the visible spectrum. The second substrate includes a second control circuitry configured to independently control the second light source.Type: GrantFiled: April 4, 2022Date of Patent: May 14, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Jesse R. Manders, Brian H. Berkeley
-
Patent number: 11970646Abstract: Disclosed are nanostructures comprising Ag, In, Ga, and S and a shell comprising Ag, Ga and S, wherein the nanostructures have a peak wavelength emission of 480-545 nm and wherein at least about 80% of the emission is band-edge emission. Also disclosed are methods of making the nanostructures.Type: GrantFiled: June 18, 2020Date of Patent: April 30, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ashenafi Damtew Mamuye, Christopher Sunderland, Ilan Jen-La Plante, Chunming Wang, John J. Curley, Nahyoung Kim, Ravisubhash Tangirala
-
Patent number: 11926776Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.Type: GrantFiled: June 22, 2022Date of Patent: March 12, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ravisubhash Tangirala, Jay Yamanaga, Wenzhou Guo, Christopher Sunderland, Ashenafi Damtew Mamuye, Chunming Wang, Eunhee Hwang, Nahyoung Kim