Patents Assigned to Shoei Electronic Materials, Inc.
  • Patent number: 9592555
    Abstract: A continuous flow reactor for the efficient synthesis of nanoparticles with a high degree of crystallinity, uniform particle size, and homogenous stoichiometry throughout the crystal is described. Disclosed embodiments include a flow reactor with an energy source for rapid nucleation of the procurors following by a separate heating source for growing the nucleates. Segmented flow may be provided to facilitate mixing and uniform energy absorption of the precursors, and post production quality testing in communication with a control system allow automatic real-time adjustment of the production parameters. The nucleation energy source can be monomodal, multimodal, or multivariable frequency microwave energy and tuned to allow different precursors to nucleate at substantially the same time thereby resulting in a substantially homogenous nanoparticle. A shell application system may also be provided to allow one or more shell layers to be formed onto each nanoparticle.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 14, 2017
    Assignee: Shoei Electronic Materials, Inc.
    Inventors: David M. Schut, Thomas E. Novet, George M. Williams
  • Publication number: 20160375495
    Abstract: A continuous flow reactor for the efficient synthesis of nanoparticles with a high degree of crystallinity, uniform particle size, and homogenous stoichiometry throughout the crystal is described. Disclosed embodiments include a flow reactor with an energy source for rapid nucleation of the procurors following by a separate heating source for growing the nucleates. Segmented flow may be provided to facilitate mixing and uniform energy absorption of the precursors, and post production quality testing in communication with a control system allow automatic real-time adjustment of the production parameters. The nucleation energy source can be monomodal, multimodal, or multivariable frequency microwave energy and tuned to allow different precursors to nucleate at substantially the same time thereby resulting in a substantially homogenous nanoparticle. A shell application system may also be provided to allow one or more shell layers to be formed onto each nanoparticle.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 29, 2016
    Applicant: Shoei Electronic Materials, Inc.
    Inventors: David M. Schut, Patrick M. Haben, Thomas E. Novet, Daniel A. Peterson, George M. Williams
  • Publication number: 20140264171
    Abstract: A continuous flow reactor for the efficient synthesis of nanoparticles with a high degree of crystallinity, uniform particle size, and homogenous stoichiometry throughout the crystal is described. Disclosed embodiments include a flow reactor with an energy source for rapid nucleation of the procurors following by a separate heating source for growing the nucleates. Segmented flow may be provided to facilitate mixing and uniform energy absorption of the precursors, and post production quality testing in communication with a control system allow automatic real-time adjustment of the production parameters. The nucleation energy source can be monomodal, multimodal, or multivariable frequency microwave energy and tuned to allow different precursors to nucleate at substantially the same time thereby resulting in a substantially homogenous nanoparticle. A shell application system may also be provided to allow one or more shell layers to be formed onto each nanoparticle.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Shoei Electronic Materials, Inc.
    Inventors: David M. Schut, Patrick M. Haben, Thomas E. Novet, Daniel A. Peterson, George M. Williams