Patents Assigned to SHPP Global Technologies B.V.
  • Patent number: 12275841
    Abstract: Thermoplastic compositions include: from about 30 wt % to about 80 wt % of a polymer base resin component; from about 3 wt % to about 20 wt % of a polycarbonate component; from about 2 wt % to about 15 wt % of an impact modifier component; from about 10 wt % to about 50 wt % of a glass fiber component; and from about 0.5 wt % to about 8 wt % of a carbon additive including carbon fiber. The compositions have a dielectric constant (Dk) of at least 5 at a frequency of from 1 GHz to 30 GHz as tested in accordance with a coaxial method.
    Type: Grant
    Filed: October 5, 2022
    Date of Patent: April 15, 2025
    Assignee: SHPP Global Technologies B.V.
    Inventors: Jian Wang, Yun Zheng
  • Patent number: 12227648
    Abstract: Disclosed herein are polymer compositions comprising from about 1 wt. % to about 99 wt. % of a polyetherimide resin; from about 1 wt. % to about 70 wt. % of a crystalline polyester resin; from about 0.1 wt. % to about 50 wt. % of an inherently dissipative polymer; and from about 0.001 wt. % to about 10 wt. % of a transesterification inhibitor. The combined weight percent value of all components does not exceed about 100 wt. %, and all weight percent values are based on the total weight of the polymer composition. The polymer composition may exhibit a surface resistivity of from 1×109 ohms to 9×1010 ohms when measured in accordance with ASTM D257.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: February 18, 2025
    Assignee: SHPP Global Technologies B.V.
    Inventors: Xiaoming Jiang, Yun Zheng, Yunan Cheng
  • Patent number: 12215222
    Abstract: Thermoplastic compositions include: a) from about 5 wt % to about 30 wt % of a thermoplastic polymer component including polycarbonate, polyethylene terephthalate or a combination thereof; b) from about 10 wt % to about 55 wt % of a poly butylene terephthalate component; c) from about 0.1 wt % to about 10 wt % of a polyester elastomer component; d) from 0 wt % to about 10 wt % of an acrylic impact modifier component; e) from 0 wt % to about 10 wt % of an ethylene/alkyl acrylate/glycidyl methacrylate terpolymer compatibilizer component; and f) from about 30 wt % to about 70 wt % of a ceramic fiber component. Articles formed from the thermoplastic compositions and methods of forming the articles are also described.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 4, 2025
    Assignee: SHPP Global Technologies B.V.
    Inventors: Mohammad Moniruzzaman, Bart Vandormael, Todd Morris Loehr, Lakshmikant Suryakant Powale
  • Patent number: 12116464
    Abstract: A composition includes a polymer base resin, a fiber filler including a sizing agent component, and an additive. The sizing agent component includes a sizing agent and a reactive aid. The composition exhibits a notched Izod impact strength of 140 to 190 J/m, and an unnotched impact strength of 500 to 1200 J/m when tested in accordance with ASTM D256.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: October 15, 2024
    Assignee: SHPP Global Technologies B.V.
    Inventors: Qin Wang, Reema Sinha, Jian Yang
  • Patent number: 12110379
    Abstract: A thermoplastic composition includes: (a) poly(cyclohexylenedimethylene terephthalate) (PCT) or a copolymer thereof; (b) at least 10 wt % of a reinforcing filler comprising glass fiber; (c) a laser direct structuring (LDS) additive comprising a tin oxide, an antimony oxide, or a combination thereof; and (d) a reflection additive comprising a titanium compound. A weight ratio of total titanium in the composition to the LDS additive in the composition is at least 0.7:1, or a weight ratio of total titanium in the composition to the PCT is 1.1:1 or less.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: October 8, 2024
    Assignee: SHPP Global Technologies B.V.
    Inventors: Yunan Cheng, Yun Zheng
  • Patent number: 12006432
    Abstract: In an embodiment, a composition comprises a polycarbonate; 1 to 5 wt % based on a total weight of the composition of a nanosilica having a D50 particle size by volume of 5 to 50 nanometers; wherein the nanosilica has a hydrophobic coating; and a siloxane domain having repeat units of the formula 10; wherein each R is independently a C1-13 monovalent organic group and the value of E is 2 to 1,000; wherein the composition comprises at least one of a polycarbonate-polysiloxane copolymer, 0.1 to 5 wt % of a polysiloxane homopolymer based on the total weight of the composition, or a plurality of polysiloxane particles having a D50 particle size by volume of 0.1 to 10 micrometers.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 11, 2024
    Assignee: SHPP Global Technologies B.V.
    Inventors: Vaidyanath Ramakrishnan, Sepehr Harsiny, Johannes Gerardus Petrus Goossens, Johannes Martinus Dina Goossens, Theodorus Lambertus Hoeks, Devendra Bajaj, Pooja Bajaj
  • Patent number: 11972886
    Abstract: Various aspects disclosed relate to hybrid nanoparticles embedded in non-magnetic microparticles. These materials can be used to directionally orient and impart an ordered structure to a variety of materials.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: April 30, 2024
    Assignee: SHPP Global Technologies B.V.
    Inventors: Devendra Bajaj, Viswanathan Kalyanaraman
  • Patent number: 11958972
    Abstract: A thermoplastic composition includes: (a) about 30 wt % to about 60 wt % of a resin component including polyphenylene ether (PPE) and polystyrene (PS); (b) from about 35 wt % to about 65 wt % of a filler component; (c) from about 1 wt % to about 5 wt % of a flow promoter including at least a partially hydrogenated hydrocarbon resin; and (d) an elastomer component including from 2.5 wt % to 5 wt % rubber content in the composition excluding the filler component. The combined weight percent value of all components does not exceed 100 wt %, and all weight percent values are based on the total weight of the composition except as indicated in (d).
    Type: Grant
    Filed: May 10, 2023
    Date of Patent: April 16, 2024
    Assignee: SHPP Global Technologies B.V.
    Inventors: Rui Mao, Shijie Song
  • Patent number: 11912864
    Abstract: Thermoplastic compositions include: (a) from about 20 wt % to about 50 wt % post-consumer recycled polycarbonate (PCR-PC); (b) from about 5 wt % to about 25 wt % of a filler component; (c) from about 4 wt % to about 7 wt % of a phosphazene component; (d) from about 20 wt % to about 65 wt % of a polycarbonate copolymer component; and (e) from about 1 wt % to about 20 wt % one or more additional components. The polycarbonate copolymer component includes bisphenol-A and a monomer comprising one or more of 3,3-Bis(4-hydroxyphenyl)-2-phenyl-2,3-dihydro-isoindol-1-one (PPPBP), 4-4-(3-3-5 trimethylcyclohexane-1-ldiyl)diphenol (BPI), 4,4?-(1-Methyl Ethyl) 1-3-cyclohexandiyl) Bis-Phenol (BHPM), 1,1-Bis(4-hydroxy-3-methyl phenyl) cyclohexane (DMBPC); 4-[1-(4-hydroxyphenyl)cyclododecyl]phenol (Red Cross), bisphenol based on cyclooctadiene, bisphenol based on isophorone nitrile, and combinations thereof.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: February 27, 2024
    Assignee: SHPP Global Technologies B.V.
    Inventors: Christopher Ryan Ziegler, Peter Vollenberg
  • Patent number: 11814479
    Abstract: A composition includes particular amounts a poly(phenylene ether), a first polyamide, hydrogenated block copolymer of an alkenyl aromatic and a conjugated diene, pentaerythritol tetrastearate, and bisphenoxyethanol fluorene. The composition can be particularly well-suited for use in a reinforced thermoplastic composition including a reinforcing carbon filler.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: November 14, 2023
    Assignee: SHPP Global Technologies B.V.
    Inventors: Yi Li, Kayoko Onda
  • Publication number: 20230323110
    Abstract: Thermoplastic compositions, methods of making the compositions, and articles including the compositions are described. The thermoplastic compositions can contain 30 wt.% to 70 wt.% of a semi-crystalline polyester, 10 wt.% to 50 wt.% of a halogenated polycarbonate, 3 wt.% to 25 wt.% of a first poly(carbonate-siloxane) copolymer having a siloxane content of less than 30 wt.%, wherein the siloxane content is based on the total weight of the first poly(carbonate-siloxane) copolymer, and 3 wt.% to 25 wt.% of a second poly(carbonate-siloxane) copolymer having a siloxane content of greater than 30 wt.%, wherein the siloxane content is based on the total weight of the second poly(carbonate-siloxane) copolymer.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 12, 2023
    Applicant: SHPP Global Technologies B.V.
    Inventors: Malvika BIHARI, Peter VOLLENBERG
  • Publication number: 20230303834
    Abstract: Thermoplastic compositions, methods of making the compositions, and composites containing the compositions are described. The thermoplastic composition can contain a polycarbonate, a polyphthalyl carbonate (PPC) copolymer, a poly (carbonate-siloxane) copolymer and an epoxy hydrostabilizer.
    Type: Application
    Filed: June 30, 2020
    Publication date: September 28, 2023
    Applicant: SHPP Global Technologies B.V.
    Inventors: Xing LIU, Wei SHAN, Yun ZHENG
  • Patent number: 11760878
    Abstract: A thermoplastic composition includes from about 30 wt % to about 95 wt % poly(methyl methacrylate) (PMMA), and from about 5 wt % to about 70 wt % of a poly(carbonate-siloxane) copolymer having a siloxane content of from about 25 wt % to about 45 wt %. A method of making a thermoplastic composition includes: (a) combining from about 30 wt % to about 95 wt % poly(methyl methacrylate) (PMMA) and from about 5 wt % to about 70 wt % of a poly(carbonate-siloxane) copolymer having a siloxane content of from about 25 wt % to about 45 wt % to form a mixture; and melt processing the mixture to polymerize it and form the thermoplastic composition.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: September 19, 2023
    Assignee: SHPP Global Technologies B.V.
    Inventors: Christopher Luke Hein, Hao Zhou, Bing Zhou, Manojkumar Chellamuthu, Peter Vollenberg
  • Patent number: 11739210
    Abstract: A thermoplastic composition includes, based on the total weight of the composition: from 20 wt % to 90 wt % of a primary thermoplastic resin including a polycarbonate component; from 0.5 wt % to 30 wt % of a functional filler including electrically conductive carbon powder, carbon nanotubes, or a combination thereof; from 0 wt % to 20 wt % of a second thermoplastic resin; and from 0 wt % to 40 wt % of at least one additional additive. The polycarbonate component includes at least 5 wt % of a poly(aliphatic ester)-polycarbonate copolymer based on the total weight of the polycarbonate component, and the combined weight percent value of all components does not exceed 100 wt %. The thermoplastic composition may be useful in, e.g., molded articles, including as a carrier tape for an electronic component.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: August 29, 2023
    Assignee: SHPP Global Technologies B.V.
    Inventor: Mingcheng Guo
  • Publication number: 20230242751
    Abstract: Thermoplastic compositions, methods of making the compositions, and composites including the compositions are described. The thermoplastic compositions can contain 55 wt. % to 85 wt. % of a poly(methyl methacrylate) (PMMA) or copolymers thereof, 2 wt. % to 25 wt. % of a poly(carbonate-siloxane) copolymer having a siloxane content of 30 wt. % to 50 wt. %, and an acrylic copolymer based impact modifier.
    Type: Application
    Filed: June 30, 2021
    Publication date: August 3, 2023
    Applicant: SHPP Global Technologies B.V.
    Inventors: Fabio DI LENA, Roland ASSINK, Mark VAN DER MEE
  • Patent number: 11649357
    Abstract: A thermoplastic composition includes a polyarylene ether component, a flame retardant additive, an impact modifier, and a laser direct structuring additive. The laser platable thermoplastic composition is capable of being plated after being activated using a laser, exhibits a plating index of greater than 0.8 when tested using X-ray fluorescence, and exhibits a heat deflection temperature of greater than 150° C. at 0.45 MPa/3.2 mm when tested in accordance with ASTM D648. In further aspects, the thermoplastic composition may further comprise a laser direct structuring additive synergist comprising a polysiloxane, a polysilane, or a silane.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: May 16, 2023
    Assignee: SHPP Global Technologies B.V.
    Inventors: Jian Wang, Shijie Song
  • Patent number: 11643586
    Abstract: A polymer composition includes: from about 20 wt. % to about 80 wt. % of a polymer base resin; from about 10 wt. % to about 60 wt. % of a thermally conductive filler; and from about 5 wt. % to about 60 wt. % of a dielectric ceramic filler having a Dk of at least 20 when measured at 1.1 GHz or greater. The polymer composition exhibits a dielectric constant greater than 3.0 at 1.1 GHz when tested using a split post dielectric resonator and network analyzer on a sample size of 120 mm by 120 mm and 6 mm thickness according to ASTM D150. The polymer composition exhibits a dissipation factor of less than 0.002 at 1.1 GHz when tested using a split post dielectric resonator and network analyzer on a sample size of 120 mm by 120 mm and 6 mm thickness according to ASTM D150.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: May 9, 2023
    Assignee: SHPP Global Technologies B.V.
    Inventors: Jian Wang, Shijie Song, Yaqin Zhang
  • Patent number: 11643594
    Abstract: A nano-composite includes a thermoplastic copolymer includes a polycarbonate copolymer including repeating siloxane units and a plurality of quantum dots. A method of making a polymer film includes forming a masterbatch composition by combining (1) a first thermoplastic copolymer including a polycarbonate copolymer including repeating siloxane units and (2) a plurality of quantum dots; combining the masterbatch composition with a second thermoplastic polymer to form a mixture; and forming the polymer film from the mixture. The polycarbonate copolymer has a siloxane content of from 15 wt % to 65 wt %.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: May 9, 2023
    Assignee: SHPP Global Technologies B.V.
    Inventors: Bing Zhou, Christopher Luke Hein, Hao Zhou
  • Patent number: 11643547
    Abstract: A thermoplastic composition includes: from about 29 wt % to about 49 wt % of a thermoplastic polymer component including a first thermoplastic polymer consisting of polybutylene terephthalate and a second thermoplastic polymer consisting of polycarbonate, polyethylene terephthalate, copolymers thereof, or a combination thereof; from about 1 wt % to about 30 wt % of a component comprising a polyester elastomer, an ethylene/alkyl acrylate/glycidyl methacrylate terpolymer compatibilizer, or a combination thereof; and from about 50 wt % to about 70 wt % of a ceramic fiber component including ceramic fibers. The first thermoplastic polymer is present the composition in a ratio of at least 2:1 as compared to the second thermoplastic polymer. Articles including the thermoplastic composition are also described.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: May 9, 2023
    Assignee: SHPP Global Technologies B.V.
    Inventors: Eddie Kebin Geng, Adam Starry, Edward Kung
  • Publication number: 20230081516
    Abstract: Fiber-reinforced composite (e.g., for portable electronic devices), and methods of molding such fiber-reinforced composite parts. Such a fiber-reinforced composite part comprises one or more fiber layers and a plurality of ceramic particles within a polymer matrix such that ceramic particles and polymer are disposed above and below each of the fiber layer(s), with the ceramic particles comprising from 30% to 90% by volume of the composite part, the polymer matrix comprising from 6% to 50% by volume of the composite part, and the fiber layer(s) comprising from 1% to 40% by volume of the composite part; the ceramic particles having a Dv50 of from 50 nanometers to 100 micrometers; the ceramic particles being substantially free of agglomeration; and the composite part having a relative density greater than 90%.
    Type: Application
    Filed: April 1, 2021
    Publication date: March 16, 2023
    Applicant: SHPP Global Technologies B.V.
    Inventors: Chiel Albertus LEENDERS, Devendra BAJAJ, Nikhil VERGHESE, Sam VAN DER AA