Patents Assigned to SiCrystal GmbH
  • Patent number: 11781245
    Abstract: The present invention relates to a silicon carbide (SiC) substrate with improved mechanical and electrical characteristics. Furthermore, the invention relates to a method for producing a bulk SiC crystal in a physical vapor transport growth system. The silicon carbide substrate comprises an inner region (102) which constitutes at least 30% of a total surface area of said substrate (100), a ring shaped peripheral region (104) radially surrounding the inner region (102), wherein a mean concentration of a dopant in the inner region (102) differs by at maximum 5·1018 cm?3, preferably 1·1018 cm?3, from the mean concentration of this dopant in the peripheral region (104).
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: October 10, 2023
    Assignee: SICRYSTAL GMBH
    Inventors: Michael Vogel, Bernhard Ecker, Ralf Müller, Matthias Stockmeier, Arnd-Dietrich Weber
  • Publication number: 20230120928
    Abstract: A method for simultaneously manufacturing more than one single crystal of a semiconductor material by physical vapor transport (PVT) includes connecting a pair of reactors to a vacuum pump system by a common vacuum channel and creating and/or controlling, with the vacuum pump system, a common gas phase condition in the inner chambers of the pair of reactors. Each reactor has an inner chamber adapted to accommodate a PVT growth structure for growth of a semiconductor single crystal.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Applicant: SiCrystal GmbH
    Inventors: Erwin Schmitt, Michael Vogel
  • Patent number: 11624124
    Abstract: The present invention relates to a silicon carbide (SiC) substrate with improved mechanical and electrical characteristics. Furthermore, the invention relates to a method for producing a bulk SiC crystal in a physical vapor transport growth system. The silicon carbide substrate comprises an inner region (102) which constitutes at least 30% of a total surface area of said substrate (100), a ring shaped peripheral region (104) radially surrounding the inner region (102), wherein a mean concentration of a dopant in the inner region (102) differs by at least 1-1018 cm-3 from the mean concentration of this dopant in the peripheral region (104).
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: April 11, 2023
    Assignee: SICRYSTAL GMBH
    Inventors: Michael Vogel, Bernhard Ecker, Ralf Müller, Matthias Stockmeier, Arnd-Dietrich Weber
  • Patent number: 11560643
    Abstract: A system for simultaneously manufacturing more than one single crystal of a semiconductor material by physical vapor transport (PVT) includes a plurality of reactors and a common vacuum channel connecting at least a pair of reactors of the plurality of reactors. Each reactor has an inner chamber adapted to accommodate a PVT growth structure for growth of a single semiconductor crystal. The common vacuum channel is connectable to a vacuum pump system for creating and/or controlling a common gas phase condition in the inner chambers of the pair of reactors.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: January 24, 2023
    Assignee: SiCrystal GmbH
    Inventors: Erwin Schmitt, Michael Vogel
  • Patent number: 11515140
    Abstract: The present invention relates to a chamfered silicon carbide substrate which is essentially monocrystalline, and to a corresponding method of chamfering a silicon carbide substrate. A silicon carbide substrate according to the invention comprises a main surface (102), wherein an orientation of said main surface (102) is such that a normal vector ({right arrow over (O)}) of the main surface (102) includes a tilt angle with a normal vector ({right arrow over (N)}) of a basal lattice plane (106) of the substrate, and a chamfered peripheral region (110), wherein a surface of the chamfered peripheral region includes a bevel angle with said main surface, wherein said bevel angle is chosen so that, in more than 75% of the peripheral region, normal vectors ({right arrow over (F)}_i) of the chamfered peripheral region (110) differ from the normal vector of the basal lattice plane by less than a difference between the normal vector of the main surface and the normal vector of the basal lattice plane of the substrate.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: November 29, 2022
    Assignee: SICRYSTAL GMBH
    Inventors: Bernhard Ecker, Ralf Müller, Matthias Stockmeier, Michael Vogel, Arnd-Dietrich Weber
  • Patent number: 11479875
    Abstract: A system for manufacturing one or more single crystals of a semiconductor material by physical vapor transport (PVT) includes a reactor having an inner chamber adapted to accommodate a PVT growth structure for growing the one or more single crystals inside. The reactor accommodates the PVT growth structure in an orientation with a growth direction of the one or more single crystals inside the PVT growth structure substantially horizontal with respect to a direction of gravity or within an angle from horizontal of less than a predetermined value.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: October 25, 2022
    Assignee: SiCrystal GmbH
    Inventors: Erwin Schmitt, Michael Vogel
  • Patent number: 11261536
    Abstract: A bulk SiC single crystal is produced by placing an SiC seed crystal in a crystal growth region of a growth crucible, and introducing SiC source material into an SiC reservoir region, and the bulk SiC single crystal is grown on from an SiC growth gas phase by deposition. The growth crucible is surrounded by an insulation that extends rotationally symmetrically and axially towards the central middle longitudinal axis. The insulation has mutually concentric insulation cylinder components and the insulation is notionally divided into insulation ring segments that are in turn notionally divided into volume elements. The insulation cylinder components are selected and positioned relative to one another such that every volume element of the insulation ring segment in question has a volume element density varying by not more than 10% from an average insulation ring segment density of the insulation ring segment in question.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: March 1, 2022
    Assignee: SiCrystal GmbH
    Inventors: Bernhard Ecker, Ralf Mueller, Matthias Stockmeier, Michael Vogel, Arnd-Dietrich Weber
  • Patent number: 11236438
    Abstract: The present invention relates to a silicon carbide (SiC) substrate with improved mechanical and electrical characteristics. Furthermore, the invention relates to a method for producing a bulk SiC crystal in a physical vapor transport growth system. The silicon carbide substrate comprises an inner region (102) which constitutes at least 30% of a total surface area of said substrate (100), a ring shaped peripheral region (104) radially surrounding the inner region (102), wherein a mean concentration of a dopant in the inner region (102) differs by at maximum 5·1018 cm?3, preferably 1·1018 cm?3, from the mean concentration of this dopant in the peripheral region (104).
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: February 1, 2022
    Assignee: SICRYSTAL GMBH
    Inventors: Michael Vogel, Bernhard Ecker, Ralf Müller, Matthias Stockmeier, Arnd-Dietrich Weber
  • Patent number: 11041254
    Abstract: The present invention relates to a chamfered silicon carbide substrate which is essentially monocrystalline, and to a corresponding method of chamfering a silicon carbide substrate. The silicon carbide substrate (100) comprises a main surface (102) and a circumferential end face surface (114) which is essentially perpendicular to the main surface (102), and a chamfered peripheral region (110), wherein a first bevel surface (106) of the chamfered peripheral region (110) includes a first bevel angle (a1) with said main surface (102), and wherein a second bevel surface (108) of the chamfered peripheral region (110) includes a second bevel angle (a2) with said end face surface (114), wherein, in more than 75% of the peripheral region, said first bevel angle (a1) has a value in a range between 20° and 50°, and said second bevel angle (a2) has a value in a range between 45° and 75°.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: June 22, 2021
    Assignee: SICRYSTAL GMBH
    Inventors: Michael Vogel, Bernhard Ecker, Ralf Müller, Arnd-Dietrich Weber, Matthias Stockmeier
  • Publication number: 20210002785
    Abstract: A system for simultaneously manufacturing more than one single crystal of a semiconductor material by physical vapor transport (PVT) includes a plurality of reactors and a common vacuum channel connecting at least a pair of reactors of the plurality of reactors. Each reactor has an inner chamber adapted to accommodate a PVT growth structure for growth of a single semiconductor crystal. The common vacuum channel is connectable to a vacuum pump system for creating and/or controlling a common gas phase condition in the inner chambers of the pair of reactors.
    Type: Application
    Filed: June 5, 2020
    Publication date: January 7, 2021
    Applicant: SiCrystal GmbH
    Inventors: Erwin Schmitt, Michael Vogel
  • Publication number: 20210002787
    Abstract: A system for manufacturing one or more single crystals of a semiconductor material by physical vapor transport (PVT) includes a reactor having an inner chamber adapted to accommodate a PVT growth structure for growing the one or more single crystals inside. The reactor accommodates the PVT growth structure in an orientation with a growth direction of the one or more single crystals inside the PVT growth structure substantially horizontal with respect to a direction of gravity or within an angle from horizontal of less than a predetermined value.
    Type: Application
    Filed: June 5, 2020
    Publication date: January 7, 2021
    Applicant: SiCrystal GmbH
    Inventors: Erwin Schmitt, Michael Vogel