Patents Assigned to Siemens Energy, Inc.
  • Patent number: 10384285
    Abstract: A method of selective laser brazing is provided. The method includes providing a powder including a plurality of parent core particles and a plurality of braze particles, setting a temperature of an energy source, applying the energy source to the powder, and allowing the heated powder to solidify. The plurality of parent core particles are fused together by the plurality of braze material into a desired component.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: August 20, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventor: Gerald J. Bruck
  • Patent number: 10367391
    Abstract: Generator stator bar having profile strip and process for manufacturing a generator stator bar are presented. The generator stator bar includes stator bar strands assembled together. The profile strip is placed on top side and bottom side surfaces of the stator bar strand assembly. The profile strip includes uncured strip consisting of uncured material. The profile strip includes pre-cured strip consisting of pre-cured material. The pre-cured strip includes cavities perforated through its thickness. The profile strip enables the generator stator bar to be manufactured by a single press and heat operation to achieve a rectangular geometry having round outer edges and to maintain orientations of stator bar strands parallel to the profile strip.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 30, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Erik Abromitis, Tristan Mills, David Earl Hulsey, Stephen Freeman
  • Patent number: 10359194
    Abstract: The present disclosure provides a gas turbine combustor liner (34) comprising an outer surface (38) and an inner surface (36), a plurality of film cooling holes (44) through a thickness of the gas turbine combustor liner (34), and a plurality of resonator boxes (32) affixed to the outer surface (38) of the gas turbine combustor liner (34). The film cooling holes (44) extend circumferentially around the gas turbine combustor liner (34) and comprise a first set of holes (56) having a first axial row spacing X and a second set of holes (58) having a second axial row spacing X?. The second set of holes (58) is formed in the gas turbine combustor liner (34) in a downstream direction relative to the first set of holes (56). The second axial row spacing X? is greater than the first axial row spacing X.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: July 23, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Reinhard Schilp, Timothy A. Fox
  • Patent number: 10352794
    Abstract: A method dynamically reconstructing a stress and strain field of a turbine blade includes providing a set of response measurements from at least one location on a turbine blade, band-pass filtering the set of response measurements based on an upper frequency limit and a lower frequency limit, determining an upper envelope and a lower envelope of the set of response measurements from local minima and local maxima of the set of response measurements, calculating a candidate intrinsic mode function (IMF) from the upper envelope and the lower envelope of the set of response measurements, providing an N×N mode shape matrix for the turbine blade, where N is the number of degrees of freedom of the turbine blade, when the candidate IMF is an actual IMF, and calculating a response for another location on the turbine blade from the actual IMF and mode shapes in the mode shape matrix.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: July 16, 2019
    Assignee: Siemens Energy, Inc.
    Inventors: Xuefei Guan, Jingdan Zhang, Shaohua Kevin Zhou, Nancy H. Ulerich, Nam Eung Kim, Nikolai R. Tevs
  • Patent number: 10343250
    Abstract: A device and method to aid in lapping a spherical washer to a steam turbine component are provided. The device includes a drive head, the drive head made up of a drive cap and a hollow cylindrical portion projecting from the drive cap. The drive cap abuts a surface of the spherical washer. The cylindrical portion fits within and is concentric to an inner diameter of the spherical washer. The device also includes an expanding gasket including an outer diameter having a contour configured to fit a contour of an inner diameter of the spherical washer and an inner diameter slides onto the cylindrical portion such that the gasket and cylindrical portion are concentric. The drive head attaches to a drive unit which imparts a torque to lap the spherical washer with respect to a steam turbine component. The expanding gasket expands and holds the spherical washer during the lapping.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: July 9, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Maxwell Pless, Stuart C. Weddle, Richard Sennott
  • Patent number: 10337944
    Abstract: An online real time steam or gas turbine engine rotor balancing system is incorporated in a rotor balance plane. A selectively displaceable balancing weight is coupled to the rotor and is selectively displaced by a motor that is coupled to the balancing weight. The motor selectively displaces the balancing weight along a displacement path that is in the balance plane. A turbine engine rotor vibration monitoring system monitors rotor vibration in real-time. A control system is coupled to rotor vibration monitoring system and the motor, for determining in real time a desired balance weight displacement position to counteract the monitored rotor vibration. The controller selectively causes the motor to displace the balancing weight to the desired displacement position. The motor power source is an inductive power source or a permanent magnet generator.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 2, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Edward David Thompson, David R. Tiffany, Benjamin E. Bassford, IV
  • Patent number: 10335878
    Abstract: A ternary near eutectic alloy of Ni, Ti, Cr is described having a relatively low melting temperature of approximately 1230 deg. C. or less, suitable for fusing cracks in turbine blades and vanes without substantial risk of cracking during the repair process. Such an alloy is suitable for low temperature joining or repair of turbine blades since it contains the same components as typical turbine blades and vanes without foreign elements to lower the melting point of the repaired material or adversely affect the mechanical properties of the repaired component. Exclusion of boron eliminates the formation of brittle boron compounds, detrimental to the properties of the repair or seam.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: July 2, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventor: Kazim Ozbaysal
  • Patent number: 10340764
    Abstract: A retightenable wedge system for tightening a coil in a slot of a generator stator bar is presented. The retightenable wedge system includes a first filler layer, a spring member, a second filler layer and a retightenable wedge assembly. The retightenable wedge assembly includes a slot wedge having an aperture, a tightening member having form fit feature and a locking member having mating form fit feature. The tightening member is tightenable in the aperture such that a radial load is applied on the second filler layer for tightening the coil in the slot. The tightening member is locked in place in the aperture by an engagement between the form fit feature of the tightening member and the mating form fit feature of the locking member such that the tightening member is restrained from backing out of the slot wedge.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 2, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Xabier A. Sanjuan, Michael R. Vindler, Michael A. Hall, Timothy J. Garner
  • Patent number: 10329945
    Abstract: An exhaust gas diffuser for a gas turbine engine whose inlet geometry can be selectively controlled to change the angular orientation of the diffuser at the location where the exhaust gas exits the last stage row of blades of the turbine section of the gas turbine engine. An end portion of the gas diffuser proximate the last stage row of blades can include one or more actuated sections that are independently controlled to change the angular orientation of the inlet geometry of the diffuser. In one embodiment, the angular orientation of the actuated sections is set at the manufacturing level for the service location of the engine. In another embodiment, the angular orientation of the actuated sections is selectively controlled based on the operating conditions of the engine. In another embodiment, the angular orientation of the actuated sections is controlled by pneumatic pressure from a compressor section of the engine.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: June 25, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Anil L. Salunkhe, Bogdan R. Raica, Christian K. Funk
  • Patent number: 10309652
    Abstract: A gas turbine engine combustor basket has nested outer and inner liners that are separated by a gap at their respective distal downstream ends for passage of cooling air between the liners. Radially inwardly projecting platefins formed on an inner circumferential surface of the outer liner maintain the cooling air passage gap. In some embodiments effusion cooling through holes are formed in the inner liner outer circumference, oriented in the air passage gap between the fins, so that cooling air passes through the effusion holes into the cooling air passage gap.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: June 4, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Kevin J. Spence, Stephan J. Storms
  • Patent number: 10309655
    Abstract: A cooling system for a fuel system in a turbine engine that is usable to cool a fuel nozzle is disclosed. The cooling system may include one or more cooling system housings positioned around the fuel nozzle, such that the cooling system housing forms a cooling chamber defined at least partially by an inner surface of the cooling system housing and an outer surface of the fuel nozzle. The fuel nozzle may extend into a combustor chamber formed at least in part by a combustor housing. The fuel nozzle may include one or more fuel exhaust orifices with an opening in an outer surface of the fuel nozzle and configured to exhaust fluids unrestricted by the housing forming the cooling system cooling chamber. The cooling system may provide cooling fluids to cool the fuel nozzle within the cooling system cooling chamber regardless of whether the fuel nozzle is in use.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: June 4, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Walter Ray Laster, Scott M. Martin, Juan Enrique Portillo Bilbao, Jacob William Hardes, Timothy A. Fox
  • Patent number: 10301207
    Abstract: There is provided a system and a method for regenerating a material that reduce the incidence of scaling due to scale forming contaminants. The method may include reducing a temperature of a treated material exiting a wet air oxidation unit in a scale reducing heat exchanger prior to delivery of the treated material to a second heat exchanger which heats a source waste material comprising a scale forming contaminant therein with heat from the first treated material to form a heated waste material comprising the scale forming contaminant.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: May 28, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Curtis D. Cooley, Simon Larson, Chad L. Felch
  • Patent number: 10295501
    Abstract: A method for scanning a weld buildup formed on a circumferential portion of a disc for a steam turbine. The method includes providing an ultrasound probe for generating at least one ultrasound beam sweep. The circumferential portion is scanned with a first beam sweep oriented in a first beam orientation to detect a first flaw type in the weld buildup. The circumferential portion is also scanned with a second beam sweep oriented in a second beam orientation to detect a second flaw type in the weld buildup. Further, the circumferential portion is scanned with a third beam sweep oriented in a third beam orientation to detect a third flaw type in the weld buildup. The method also includes rotating the disc about a disc axis during scanning of the circumferential portion and moving the first, second and third beam sweeps in a direction parallel to the disc axis during scanning.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: May 21, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: El Mahjoub Rasselkorde, Michael F. Fair, David S. Segletes, Erik A. Lombardo, Scott M. Westby-Gibson, Waheed A. Abbasi
  • Patent number: 10293434
    Abstract: A method for forming a dispersion strengthened alloy. An alloy material (8) is melted with a heat source (28) to form a melt pool (30) in the presence of a flux material (26), and strengthening particles (36) are directed into the melt pool such that the particles are dispersed within the melt pool. Upon solidification, a dispersion strengthened alloy (44) is formed as a layer or weld joint bonded to an underlying substrate or as an object contained in a removal support.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: May 21, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Gerald J. Bruck, Ahmed Kamel
  • Patent number: 10288290
    Abstract: A flow conditioning device for a can annular gas turbine engine, including a plurality of flow elements disposed in a compressed air flow path leading to a combustor, configured such that relative adjustment of at least one flow directing element with respect to an adjacent flow directing element during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: May 14, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Walter Ray Laster, Reinhard Schilp
  • Patent number: 10280809
    Abstract: A method for operating a combined cycle power plant (CCPP) and improving a part load operation of the CCPP is provided. The CCPP may include at least a gas turbine, a heat recovery steam generator (HRSG) located downstream of the gas turbine, a main steam turbine, and a supercritical steam turbine. The HRSG may include a low pressure steam system, an intermediate pressure steam system, and a high pressure steam system. To improve the part load efficiency of the CCPP, a base load operation of the CCPP may be initiated with supercritical pressure, via the supercritical steam turbine, such that the efficiency impact resulting from the part load operation is reduced.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: May 7, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Michael S. Briesch, Ankur Deshmukh
  • Patent number: 10281712
    Abstract: Internal components of power generation machinery, such as gas turbine engines, are inspected with a spherical, optical-camera inspection system, mounted within a camera housing on a distal end of a compact diameter, single-axis inspection scope. The inspection scope includes nested, non-rotatable telescoping tubes, which define an extension axis. Circumscribing, telescoping tubes have anti-rotation collars, which are in sliding engagement with extension tracks on a circumferential surface of an opposing, nested tube, for ease of extension and retraction of the camera during visual inspections of power generation machinery. The camera is advanced and/or retracted along a scope extension axis by nested, drive tubes, which incorporate at least one external drive screw on a circumscribed drive tube and corresponding female threads formed in a circumscribing drive tube. The spherical camera has a 360-degree field of view, and captures images without rotation about the scope extension axis.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: May 7, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: David Letter, Isaac Piersall, Clifford Hatcher, Jr.
  • Patent number: 10279438
    Abstract: A method of making pre-sintered preforms using a mixture of base superalloy particles and titanium-containing boron and silicon free braze alloy particles, such as for the repair of superalloy gas turbine engine components. Alloy particles as large as 2 mm provide reduced shrinkage when compared to prior art preforms. Braze material compositions disclosed herein are boron and silicon free and may have melting temperature ranges as low as 10° C., and they include no element not already present in the composition of the superalloy component.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 7, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Kazim Ozbaysal, Ahmed Kamel
  • Patent number: 10274541
    Abstract: Eddy current inspection of the step iron region of a generator stator core lamina insulation is performed while the rotor is in situ, with inspection system (81). The system (81) excites the stator core (26) and then measures any eddy currents indicative of a damaged region. The inspection system carriage (42) and its pivoting extension arm (52) are inserted within the rotor gap (34) while the rotor (22) remains in situ within the generator (20). The EL CID system's eddy current sensing coil assembly (54) includes a Chattock coil (70), which is mounted in a coil housing (56, 58) that is in turn pivotally mounted on a distal end of the extension arm (52). A sensing surface (60) of the coil housing (56, 58) remains in abutting contact with the generator core circumference in the step iron region (32), despite the step-like profile of the core circumference in that region.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: April 30, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Mark W. Fischer, James A. Bauer, Lukas Demsey
  • Patent number: 10274718
    Abstract: Internal components of power generation machinery, such as gas turbine engines, are inspected with a spherical, optical-camera inspection system, mounted within a camera housing on a distal end of a compact diameter, single-axis inspection scope. The inspection scope includes nested, non-rotatable telescoping tubes, which define an extension axis. Circumscribing, telescoping tubes have anti-rotation collars, which are in sliding engagement with extension tracks on a circumferential surface of an opposing, nested tube, for ease of extension and retraction of the camera during visual inspections of power generation machinery. The camera is advanced and/or retracted along a scope extension axis by nested, drive tubes, which incorporate at least one external drive screw on a circumscribed drive tube and corresponding female threads formed in a circumscribing drive tube. The spherical camera has a 360-degree field of view, and captures images without rotation about the scope extension axis.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 30, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: David Letter, Isaac Piersall, Clifford Hatcher, Jr.