Patents Assigned to Siemens Industrial Automation, Inc.
  • Patent number: 5359640
    Abstract: An X-ray diffractometer having a simple yet accurate means for locating the surface of the sample to be examined with respect to the zero point of the X-ray (RS) is disclosed. Briefly stated, a laser (LA) and camera (KA) are positioned at preferably 90.degree. with respect to each other such that the intersection of the optical axis of the camera and the laser passes through the zero point of the diffractometer. In this fashion, the camera will see at its center, the zero point of the X-ray despite the fact that the X-ray is of course invisible to the naked eye. Accordingly, by movement of the sample (P) with respect to this camera image, the true and correct zero point of the X-ray with respect to the surface of the sample to be examined may be determined without the need for experimental and unnecessary X-ray or examination runs being taken.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: October 25, 1994
    Assignee: Siemens Industrial Automation, Inc.
    Inventors: Juergen Fink, Rolf Schipper, Kingsley Smith, Richard Ortega
  • Patent number: 5323309
    Abstract: An auxiliary resolver position tracking (RPT) system for an industrial robot includes a resolver excitation and monitoring system which is powered by an uninterruptable power supply which includes a battery. The RPT system generates trapezoidal excitation pulses for the resolvers in the robot when no external excitation signal is applied, for example when the robot is shut down. Since there is relatively little motion to be detected in these instances, the RPT system switches between a slow position sampling rate, when no motion is detected, and a fast sampling rate when motion is detected. When operating on battery power, the RPT only switches to the fast sampling rate when motion is detected. To ensure that no motion data is lost when the system switches back to the slow sampling rate, the high sampling rate is maintained for a time sufficient to capture any residual motion of the robot.
    Type: Grant
    Filed: January 30, 1992
    Date of Patent: June 21, 1994
    Assignees: Siemens Industrial Automation, Inc., Comau S.p.A.
    Inventors: Donald K. Taylor, Richard J. Maczka, Carl H. Russell, III
  • Patent number: 5229697
    Abstract: An auxiliary resolver position tracking (RPT) system for an industrial robot includes a resolver excitation and monitoring system which is powered by an uninterruptable power supply which includes a battery. The RPT system generates trapezoidal excitation pulses for the resolvers in the robot when no external excitation signal is applied, for example when the robot is shut down. Since there is relatively little motion to be detected in these instances, the RPT system switches between a slow position sampling rate, when no motion is detected, and a fast sampling rate when motion is detected. When operating on battery power, the RPT only switches to the fast sampling rate when motion is detected. To ensure that no motion data is lost when the system switches back to the slow sampling rate, the high sampling rate is maintained for a time sufficient to capture any residual motion of the robot.
    Type: Grant
    Filed: January 30, 1992
    Date of Patent: July 20, 1993
    Assignees: Siemens Industrial Automation, Inc., Comau S.p.A.
    Inventors: Donald K. Taylor, Richard J. Maczka, Carl H. Russell, III
  • Patent number: 5204603
    Abstract: An auxiliary resolver position tracking (RPT) system for an industrial robot includes a resolver excitation and monitoring system which is powered by an uninterruptable power supply which includes a battery. The RPT system generates trapezoidal excitation pulses for the resolvers in the robot when no external excitation signal is applied, for example when the robot is shut down. Since there is relatively little motion to be detected in these instances, the RPT system switches between a slow position sampling rate, when no motion is detected, and a fast sampling rate when motion is detected. When operating on battery power, the RPT only switches to the fast sampling rate when motion is detected. To ensure that no motion data is lost when the system switches back to the slow sampling rate, the high sampling rate is maintained for a time sufficient to capture any residual motion of the robot.
    Type: Grant
    Filed: January 30, 1992
    Date of Patent: April 20, 1993
    Assignees: Siemens Industrial Automation, Inc., Comau S.p.A.
    Inventors: Donald K. Taylor, Richard J. Maczka, Carl H. Russell, III
  • Patent number: 5200683
    Abstract: An auxiliary resolver position tracking (RPT) system for an industrial robot includes a resolver excitation and monitoring system which is powered by an uninterruptable power supply which includes a battery. The RPT system generates trapezoidal excitation pulses for the resolvers in the robot when no external excitation signal is applied, for example when the robot is shut down. Since there is relatively little motion to be detected in these instances, the RPT system switches between a slow position sampling rate, when no motion is detected, and a fast sampling rate when motion is detected. When operating on battery power, the RPT only switches to the fast sampling rate when motion is detected. To ensure that no motion data is lost when the system switches back to the slow sampling rate, the high sampling rate is maintained for a time sufficient to capture any residual motion of the robot.
    Type: Grant
    Filed: January 30, 1992
    Date of Patent: April 6, 1993
    Assignee: Siemens Industrial Automation, Inc.
    Inventors: Donald K. Taylor, Richard J. Maczka, Carl H. Russell, III
  • Patent number: 5198739
    Abstract: An auxiliary resolver position tracking (RPT) system for an industrial robot includes a resolver excitation and monitoring system which is powered by an uninterruptable power supply which includes a battery. The RPT system generates trapezoidal excitation pulses for the resolvers in the robot when no external excitation signal is applied, for example when the robot is shut down. Since there is relatively little motion to be detected in these instances, the RPT system switches between a slow position sampling rate, when no motion is detected, and a fast sampling rate when motion is detected. When operating on battery power, the RPT only switches to the fast sampling rate when motion is detected. To ensure that no motion data is lost when the system switches back to the slow sampling rate, the high sampling rate is maintained for a time sufficeint to capture any residual motion of the robot.
    Type: Grant
    Filed: January 30, 1992
    Date of Patent: March 30, 1993
    Assignee: Siemens Industrial Automation, Inc.
    Inventors: Donald K. Taylor, Richard J. Maczka, Carl H. Russell, III
  • Patent number: 5198735
    Abstract: An auxiliary resolver position tracking (RPT) system for an industrial robot includes a resolver excitation and monitoring system which is powered by an uninterruptable power supply which includes a battery. The RPT system generates trapezoidal excitation pulses for the resolvers in the robot when no external excitation signal is applied, for example when the robot is shut down. Since there is relatively little motion to be detected in these instances, the RPT system switches between a slow position sampling rate, when no motion is detected, and a fast sampling rate when motion is detected. When operating on battery power, the RPT only switches to the fast sampling rate when motion is detected. To ensure that no motion data is lost when the system switches back to the slow sampling rate, the high sampling rate is maintained for a time sufficient to capture any residual motion of the robot.
    Type: Grant
    Filed: January 30, 1992
    Date of Patent: March 30, 1993
    Assignee: Siemens Industrial Automation, Inc.
    Inventors: Donald K. Taylor, Richard J. Maczka, Carl H. Russell, III
  • Patent number: 5163854
    Abstract: A high power density field wireable connector wherein both the wire insertion and the screw tightening mechanism for retaining an inserted wire in the connector are front accessible and negate the requirement to remove the module as in the prior art. The wiring is located toward the interior of the connector rather than the exterior so that the screws are more accessible. The connector housing includes a mechanism for captivating the mounting screws and a two position locator so that various modules already located in the field can use the same connector. Fingers on the circuit board make contact with contact fingers within the connector. Both the fingers on the circuit board and the contact fingers within the connector are preferably plated with gold. A normal spring force on the fingers within the connector is provided by the cantilever action of interior walls of the connector housing with the contact fingers disposed within the housing.
    Type: Grant
    Filed: December 18, 1991
    Date of Patent: November 17, 1992
    Assignee: Siemens Industrial Automation, Inc.
    Inventors: Harold J. Licht, Gordon R. Potts