Patents Assigned to SIGMASENSE, LLC.
  • Publication number: 20230113692
    Abstract: A batteryless wireless sensor system includes a data acquisition system, a radio frequency (RF) transceiver, and a batteryless wireless sensor device. The RF transceiver is in communication with the data acquisition system, transmits a RF signal, and receives sensor data and provide the sensor data to the data acquisition system. The batteryless wireless sensor device includes a RF transmitter, an analog to digital converter (ADC), and a sensor. The batteryless wireless sensor harvests energy from the RF signal and generates a DC signal based on the energy harvested from the RF signal, powers up and operates the ADC and the sensor based on the DC signal, and generates sensor data. The batteryless wireless sensor then transmits the sensor data via the RF transmitter to the RF transceiver. In certain examples, the ADC is implemented as a current mode ADC.
    Type: Application
    Filed: November 30, 2022
    Publication date: April 13, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Phuong Huynh
  • Publication number: 20230110019
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 13, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11625022
    Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: April 11, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Publication number: 20230109203
    Abstract: A touch sensor device includes a first panel, a second panel, and a drive-sense circuit (DSC). The first panel that includes first electrodes arranged in a first direction and second electrodes arranged in a second direction. The second panel includes third electrodes arranged in a third direction and fourth electrodes arranged in a fourth direction. The DSC is operably coupled via a single line to a coupling of a first electrode of the first electrodes and a first electrode of the third electrodes. The DSC is configured to provide the signal, which is generated based on a reference signal, via the single line to the coupling and simultaneously to sense the signal via the single line. The DSC generates a digital signal representative of the at least one electrical characteristic associated with the first electrode of the first electrodes and/or the first electrode of the third electrodes.
    Type: Application
    Filed: December 5, 2022
    Publication date: April 6, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Kevin Joseph Derichs
  • Patent number: 11620014
    Abstract: A touchscreen display includes one or more display drivers coupled to an active matrix display and one or more touch controllers coupled to one or more touch sensor conductors. The one or more display drivers are coupled to the active matrix display via active matrix conductive components. When enabled, the one or more display drivers is configured to transmit a first signal to the active matrix display in accordance with display operation. A touch sensor conductor includes one or more segments of the active matrix conductive components. When enabled, a touch controller of the one or more touch controllers is configured to transmit a second signal via the touch sensor conductor in accordance with touchscreen operation that is performed concurrently with the display operation.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 4, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20230076645
    Abstract: A drive-sense circuit coupled to a variable impedance load. The drive-sense circuit includes a voltage reference circuit operable to generate a voltage reference signal. The drive-sense circuit further includes a regulated current source circuit operable to generate a regulated current signal based on an analog regulation signal, where the regulated current signal is provided on a line to the variable impedance load to keep a load voltage on the line substantially matching the voltage reference signal, and where an impedance of the variable impedance load affects the regulated current signal. The drive-sense circuit further includes a current loop correction circuit operable to generate a comparison signal based on the voltage reference signal and the load voltage, where the comparison signal represents the impedance, and where the analog regulation signal is representative of the comparison signal.
    Type: Application
    Filed: October 24, 2022
    Publication date: March 9, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230073397
    Abstract: A pacemaker system includes a drive-sense circuit (DSC) operably coupled to a pacemaker lead. The DSC generates a pace signal including electrical impulses based on a reference signal. The DSC provides the pace signal via the pacemaker lead to an electrically responsive portion of a cardiac conductive system of a subject to facilitate cardiac operation of a cardiovascular system of the subject. The DSC senses, via the pacemaker lead, cardiac electrical activity of the cardiovascular system of the subject that is generated in response to the pace signal and electrically coupled into the pacemaker lead and generates a digital signal that is representative of the cardiac electrical activity of the cardiovascular system of the subject that is sensed via the pacemaker lead. The DSC provides digital information to one or more processing modules that includes and/or is coupled to memory and that provide the reference signal to the DSC.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 9, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Shayne X. Short, Timothy W. Markison
  • Patent number: 11599094
    Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: March 7, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Publication number: 20230061106
    Abstract: A drive-sense circuit coupled to a variable impedance load. The drive-sense circuit includes a voltage reference circuit operable to generate a voltage reference signal. The drive-sense circuit further includes a regulated current source circuit operable to generate a regulated current signal based on an analog regulation signal, where the regulated current signal is provided on a line to the variable impedance load to keep a load voltage on the line substantially matching the voltage reference signal, and where an impedance of the variable impedance load affects the regulated current signal. The drive-sense circuit further includes a current loop correction circuit operable to generate a comparison signal based on the voltage reference signal and the load voltage, where the comparison signal represents the impedance, and where the analog regulation signal is representative of the comparison signal.
    Type: Application
    Filed: October 24, 2022
    Publication date: March 2, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Patent number: 11592978
    Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: February 28, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11592915
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 28, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11592921
    Abstract: A touchscreen display includes one or more display drivers coupled to an active matrix display and one or more touch controllers coupled to one or more touch sensor conductors. The one or more display drivers are coupled to the active matrix display via active matrix conductive components. When enabled, the one or more display drivers is configured to transmit a first signal to the active matrix display in accordance with display operation. A touch sensor conductor includes one or more segments of the active matrix conductive components. When enabled, a touch controller of the one or more touch controllers is configured to transmit a second signal via the touch sensor conductor in accordance with touchscreen operation that is performed concurrently with the display operation.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: February 28, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Kevin Joseph Derichs
  • Publication number: 20230059914
    Abstract: A touch sensor device includes a first panel, a second panel, and a drive-sense circuit (DSC). The first panel that includes first electrodes arranged in a first direction and second electrodes arranged in a second direction. The second panel includes third electrodes arranged in a third direction and fourth electrodes arranged in a fourth direction. The DSC is operably coupled via a single line to a coupling of a first electrode of the first electrodes and a first electrode of the third electrodes. The DSC is configured to provide the signal, which is generated based on a reference signal, via the single line to the coupling and simultaneously to sense the signal via the single line. The DSC generates a digital signal representative of the at least one electrical characteristic associated with the first electrode of the first electrodes and/or the first electrode of the third electrodes.
    Type: Application
    Filed: October 26, 2022
    Publication date: February 23, 2023
    Applicant: SIGMASENSE, LLC.
    Inventor: Kevin Joseph Derichs
  • Patent number: 11586309
    Abstract: A touch screen display includes a display, a video graphics processing module, electrodes integrated into at least a portion of the display, and drive-sense circuits coupled to the electrodes. The drive-sense circuits, when enabled and concurrent with the display rendering frames of data into the visible images, detect changes in electrical characteristics of electrodes. At least some drive-sense circuits monitor sensor signals on at least some electrodes. A sensor signal includes a drive signal component and a receive signal component. The at least some drive-sense circuits generate the drive signal components of the sensor signals. The receive signal component is a representation of a change in an electrical characteristic of an electrode of the at least some electrodes when a corresponding drive signal component is applied to the electrode. The change in the electrical characteristic of the electrode is indicative of a proximal touch to the touch screen display.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: February 21, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Publication number: 20230052978
    Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.
    Type: Application
    Filed: October 28, 2022
    Publication date: February 16, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20230047760
    Abstract: A pacemaker system includes a drive-sense circuit (DSC) operably coupled to a pacemaker lead. The DSC generates a pace signal including electrical impulses based on a reference signal. The DSC provides the pace signal via the pacemaker lead to an electrically responsive portion of a cardiac conductive system of a subject to facilitate cardiac operation of a cardiovascular system of the subject. The DSC senses, via the pacemaker lead, cardiac electrical activity of the cardiovascular system of the subject that is generated in response to the pace signal and electrically coupled into the pacemaker lead and generates a digital signal that is representative of the cardiac electrical activity of the cardiovascular system of the subject that is sensed via the pacemaker lead. The DSC provides digital information to one or more processing modules that includes and/or is coupled to memory and that provide the reference signal to the DSC.
    Type: Application
    Filed: October 28, 2022
    Publication date: February 16, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Shayne X. Short, Ph.D., Timothy W. Markison
  • Publication number: 20230052531
    Abstract: A rotating equipment system with in-line drive-sense circuit (DSC) electric power signal processing includes rotating equipment, in-line drive-sense circuits (DSCs), and one or more processing modules. The in-line DSCs receive input electrical power signals and generate motor drive signals for the rotating equipment. An in-line DSC receives an input electrical power signal, processes it to generate and output a motor drive signal to the rotating equipment via a single line and simultaneously senses the motor drive signal via the single line. Based on the sensing of the motor drive signal via the single line, the in-line DSC provides a digital signal to the one or more processing modules that receive and process the digital signal to determine information regarding one or more operational conditions of the rotating equipment, and based thereon, selectively facilitate one or more adaptation operations on the motor drive signal via the in-line DSC.
    Type: Application
    Filed: October 28, 2022
    Publication date: February 16, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Patent number: 11580045
    Abstract: A method includes determining, by one or more processing entities associated with at least one of: one or more low voltage drive circuits (LVDCs) and one or more other LVDCs, an initial data conveyance scheme and an initial communication scheme for each communication of a plurality of communications on one or more lines of a bus. The method further includes determining a desired number of channels for each communication of the plurality of communications based on the initial data conveyance scheme and the initial communication scheme, a desired total number of channels for the plurality of communications based on the desired number of channels, determining whether the desired total number of channels for the plurality of communications exceeds a total number of available channels. If not, allocating the desired number of channels to each communication of the plurality of communications in accordance with the channel allocation mapping.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: February 14, 2023
    Assignee: SIGMASENSE, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Publication number: 20230038539
    Abstract: A touch sensor device (TSD) includes TSD electrodes associated with a surface of the TSD. Also, an overlay that includes marker electrode(s) is also associated with at least a portion of the surface of the TSD. The TSD also includes drive-sense circuits (DSCs) operably coupled to the plurality of TSD electrodes. A DSC is configured to provide a TSD electrode signal to a TSD electrode and simultaneously to sense a change of the TSD electrode signal based on a change of impedance of the TSD electrode caused by capacitive coupling between the TSD electrode and the marker electrode(s) of the overlay. Processing module(s) is configured to process a digital signal generated by the DSC to determine characteristic(s) of the overlay that is associated with the at least a portion of the surface of the TSD.
    Type: Application
    Filed: October 20, 2022
    Publication date: February 9, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Kevin Joseph Derichs, Shayne X. Short, Ph.D., Timothy W. Markison
  • Publication number: 20230034926
    Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.
    Type: Application
    Filed: September 29, 2022
    Publication date: February 2, 2023
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.