Patents Assigned to SIGMASENSE, LLC.
  • Publication number: 20220075335
    Abstract: A rotating equipment system with in-line drive-sense circuit (DSC) electric power signal processing includes rotating equipment, in-line drive-sense circuits (DSCs), and one or more processing modules. The in-line DSCs receive input electrical power signals and generate motor drive signals for the rotating equipment. An in-line DSC receives an input electrical power signal, processes it to generate and output a motor drive signal to the rotating equipment via a single line and simultaneously senses the motor drive signal via the single line. Based on the sensing of the motor drive signal via the single line, the in-line DSC provides a digital signal to the one or more processing modules that receive and process the digital signal to determine information regarding one or more operational conditions of the rotating equipment, and based thereon, selectively facilitate one or more adaptation operations on the motor drive signal via the in-line DSC.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 10, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Patent number: 11269436
    Abstract: A touchscreen display includes one or more display drivers coupled to an active matrix display and one or more touch controllers coupled to one or more touch sensor conductors. The one or more display drivers are coupled to the active matrix display via active matrix conductive components. When enabled, the one or more display drivers is configured to transmit a first signal to the active matrix display in accordance with display operation. A touch sensor conductor includes one or more segments of the active matrix conductive components. When enabled, a touch controller of the one or more touch controllers is configured to transmit a second signal via the touch sensor conductor in accordance with touchscreen operation that is performed concurrently with the display operation.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: March 8, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11269510
    Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: March 8, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Patent number: 11265002
    Abstract: A method includes converting, by n analog to digital converter circuits, n analog signals into n first digital signals having a first data rate frequency; converting, by n digital decimation filtering circuits, the n first digital signals into n second digital signals having a second data rate frequency; and converting, by n digital bandpass filter (BPF) circuits, the n second digital signals into a plurality of outbound digital signals having a third data rate frequency. The coefficients for the taps of a digital BPF circuit is set to produce a bandpass region approximately centered at the oscillation frequency of the analog signal and having a bandwidth tuned for filtering a pure tone component of the analog signal. The first data rate frequency is a first integer multiple of the third data rate frequency. The second data rate frequency is a second integer multiple of the third data rate frequency.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: March 1, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Grant Howard McGibney, Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand
  • Publication number: 20220058152
    Abstract: A method includes determining, by one or more processing entities associated with at least one of: one or more low voltage drive circuits (LVDCs) and one or more other LVDCs, an initial data conveyance scheme and an initial communication scheme for each communication of a plurality of communications on one or more lines of a bus. The method further includes determining a desired number of channels for each communication of the plurality of communications based on the initial data conveyance scheme and the initial communication scheme, a desired total number of channels for the plurality of communications based on the desired number of channels, determining whether the desired total number of channels for the plurality of communications exceeds a total number of available channels. If not, allocating the desired number of channels to each communication of the plurality of communications in accordance with the channel allocation mapping.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Richard Stuart Seger, JR., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Publication number: 20220057349
    Abstract: An organic and inorganic material test system includes at least one test container, a first and second set of electrodes embedded in the at least one test container, a set of transmit circuits coupled to the first set of electrodes, and a set of differential drive-sense circuits (DDSCs) coupled to the second set of electrodes. A first transmit circuit coupled to a first electrode is operable to produce a first transmit signal at a first frequency for transmission through contents of a first test container. A first DDSC coupled to a second electrode of the first test container includes a pair of drive-sense circuits (DSCs) and an output operational amplifier. The pair of DSCs are operable to generate receive signals at the first frequency. The output operational amplifier compares receive signals to produce a signal representative of the contents with respect to positioning of the first and second electrodes.
    Type: Application
    Filed: August 31, 2021
    Publication date: February 24, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Gerald Dale Morrison, Patrick Troy Gray, Phuong Huynh, Timothy W. Markison, Patricia M. Healy
  • Publication number: 20220057879
    Abstract: A touch screen display includes a display, a video graphics processing module, electrodes integrated into at least a portion of the display, and drive-sense circuits coupled to the electrodes. The drive-sense circuits, when enabled and concurrent with the display rendering frames of data into the visible images, detect changes in electrical characteristics of electrodes. At least some drive-sense circuits monitor sensor signals on at least some electrodes. A sensor signal includes a drive signal component and a receive signal component. The at least some drive-sense circuits generate the drive signal components of the sensor signals. The receive signal component is a representation of a change in an electrical characteristic of an electrode of the at least some electrodes when a corresponding drive signal component is applied to the electrode. The change in the electrical characteristic of the electrode is indicative of a proximal touch to the touch screen display.
    Type: Application
    Filed: August 31, 2021
    Publication date: February 24, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Publication number: 20220053269
    Abstract: An audio in/out device includes an audible in/out transducer operable to convert an audible input signal to an audio receive (RX) signal and convert an audio transmit (TX) signal to an audible output signal. The audio in/out device further includes an audio receive/transmit (RX/TX) circuit operable to convert a digital TX signal to the audio TX signal for transmission to the audible in/out transducer, receive the audio RX signal from the audible in/out transducer, and convert the audio RX signal into a digital transmit/receive (Tx/Rx) signal. The digital Tx/Rx signal includes a representation of the audio RX signal.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 17, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Phuong Huynh, Daniel Keith Van Ostrand, Patrick Troy Gray
  • Publication number: 20220043409
    Abstract: A rotating equipment system with in-line drive-sense circuit (DSC) electric power signal processing includes rotating equipment, in-line drive-sense circuits (DSCs), and one or more processing modules. The in-line DSCs receive input electrical power signals and generate motor drive signals for the rotating equipment. An in-line DSC receives an input electrical power signal, processes it to generate and output a motor drive signal to the rotating equipment via a single line and simultaneously senses the motor drive signal via the single line. Based on the sensing of the motor drive signal via the single line, the in-line DSC provides a digital signal to the one or more processing modules that receive and process the digital signal to determine information regarding one or more operational conditions of the rotating equipment, and based thereon, selectively facilitate one or more adaptation operations on the motor drive signal via the in-line DSC.
    Type: Application
    Filed: September 22, 2021
    Publication date: February 10, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20220045551
    Abstract: A device operative to transfer power wirelessly includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s). The DSC generates a drive signal based on a reference signal and provides the drive signal to a first coil via a single line and via a resonating capacitor, and simultaneously senses the drive signal via the single line, to facilitate electromagnetic coupling to a second coil to transfer power wirelessly to another device. The DSC also detects electrical characteristic(s) of the drive signal. The processing module(s) generates the reference signal and processes the digital signal to determine the electrical characteristic(s) of the drive signal. In some examples, the processing module(s) adapts the reference signal based on detection of the other device (e.g., based on interpreting the electrical characteristic(s) of the drive signal).
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Daniel Keith Van Ostrand, Phuong Huynh
  • Publication number: 20220037929
    Abstract: A device operative to transfer power wirelessly includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s). The DSC generates a drive signal based on a reference signal and provides the drive signal to a first coil via a single line and via a resonating capacitor, and simultaneously senses the drive signal via the single line, to facilitate electromagnetic coupling to a second coil to transfer power wirelessly to another device. The DSC also detects electrical characteristic(s) of the drive signal. The processing module(s) generates the reference signal and processes the digital signal to determine the electrical characteristic(s) of the drive signal. In some examples, the processing module(s) adapts the reference signal based on detection of the other device (e.g., based on interpreting the electrical characteristic(s) of the drive signal).
    Type: Application
    Filed: October 19, 2021
    Publication date: February 3, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Daniel Keith Van Ostrand, Phuong Huynh
  • Patent number: 11237653
    Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: February 1, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
  • Patent number: 11231793
    Abstract: A pen apparatus with a pressure sensitive tip mechanism that internally generates pressure, tilt, and/or barrel rotation through the use of a multi-axis measurement scheme with simultaneous transmit, receive, and sensing driver capability operable in conjunction with a receiving system or in a relative stand-alone manner. Signaling schemes are provided for operating the pen apparatus to achieve improved function. Systems and methods are provided for operating a pen, and for operating a pen with a touch sensor system. Drive/receive circuitry and methods of driving and receiving sensor electrode signals are provided that allow digital I/O pins to be used to interface with touch sensor electrodes. This circuitry may be operated in modes to sense various combinations of signals coupled within a pen, or from outside of a pen.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: January 25, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Michael Gray
  • Publication number: 20220016422
    Abstract: A pacemaker system includes a drive-sense circuit (DSC) operably coupled to a pacemaker lead. The DSC generates a pace signal including electrical impulses based on a reference signal. The DSC provides the pace signal via the pacemaker lead to an electrically responsive portion of a cardiac conductive system of a subject to facilitate cardiac operation of a cardiovascular system of the subject. The DSC senses, via the pacemaker lead, cardiac electrical activity of the cardiovascular system of the subject that is generated in response to the pace signal and electrically coupled into the pacemaker lead and generates a digital signal that is representative of the cardiac electrical activity of the cardiovascular system of the subject that is sensed via the pacemaker lead. The DSC provides digital information to one or more processing modules that includes and/or is coupled to memory and that provide the reference signal to the DSC.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Shayne X. Short, Ph.D., Timothy W. Markison
  • Publication number: 20220016418
    Abstract: An electrical stimulation system includes a sheath that includes conductive points that are operative to facilitate electrical stimulation to a bodily portion of a user. Drive-sense circuits (DSCs) generate electrical stimulation signals based on reference signals and provide those electrical stimulation signals via electrodes to the conductive points of the sheath. The electrical stimulation signal is coupled into respective locations of the bodily portion of the user that are in proximity to or in contact with the conductive points of the sheath. In addition, the DSCs sense, via the conductive points of the sheath and via the electrodes, changes of the electrical stimulation signals based on coupling of them into the respective locations of the bodily portion of the user. The DSCs provide digital signals that are representative of the changes of the electrical stimulation signals to one or more processing modules that includes and/or is coupled to memory.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Applicant: SIGMASENSE, LLC.
    Inventors: John Christopher Price, Shayne X. Short, Ph.D., Timothy W. Markison
  • Patent number: 11221980
    Abstract: A low voltage drive circuit (LVDC) operable to convey data via a bus and includes a signal generator operable to convert transmit digital data into analog outbound data. The LVDC also includes an analog to digital output circuit operable to convert analog inbound data into received digital data. The LVDC further includes a drive circuit operable to convert the analog outbound data into an analog transmit signal and drive the analog transmit signal on to the bus, where the analog outbound data is represented within the analog transmit signal as variances in loading of the bus at a first frequency. The LVDC further includes a sense circuit operable to receive an analog receive signal from the bus and convert the analog receive signal into the analog inbound data, where the analog inbound data is represented within the analog receive signal as variances in loading of the bus at a second frequency.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: January 11, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
  • Patent number: 11216109
    Abstract: A touch sensor device includes a first panel, a second panel, and a drive-sense circuit (DSC). The first panel that includes first electrodes arranged in a first direction and second electrodes arranged in a second direction. The second panel includes third electrodes arranged in a third direction and fourth electrodes arranged in a fourth direction. The DSC is operably coupled via a single line to a coupling of a first electrode of the first electrodes and a first electrode of the third electrodes. The DSC is configured to provide the signal, which is generated based on a reference signal, via the single line to the coupling and simultaneously to sense the signal via the single line. The DSC generates a digital signal representative of the at least one electrical characteristic associated with the first electrode of the first electrodes and/or the first electrode of the third electrodes.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: January 4, 2022
    Assignee: SIGMASENSE, LLC.
    Inventor: Kevin Joseph Derichs
  • Patent number: 11215973
    Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: January 4, 2022
    Assignee: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
  • Publication number: 20210396812
    Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.
    Type: Application
    Filed: August 31, 2021
    Publication date: December 23, 2021
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
  • Publication number: 20210389838
    Abstract: A touch screen display includes a display, a video graphics processing module, electrodes, and drive-sense circuits. The electrodes integrated into the display, which is operable to render frames of data into visible images. The video graphics processing module is operably coupled to generate the frames of data. The drive-sense circuits, when enabled and concurrent with the display rendering the frames of data into the visible images, monitor sensor signals on the electrodes. A sensor signal includes a drive signal component and a receive signal component. The drive-sense circuits generate the drive signal components of the sensor signals and the receive signal components are representation of impedances of the electrodes. A change in impedance is indicative of a proximal touch to the touch screen display.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Applicant: SIGMASENSE, LLC.
    Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.